Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Draft "Genetic Road Map" of Biofuels Crop

27.01.2011
The first rough draft of a “genetic road map” of a biomass crop, prairie cordgrass, is giving scientists an inside look at the genes of one of the crops that may help produce the next generation of biofuels.

The study already has produced the “transcriptome” of the species, said plant geneticist Jose Gonzalez of South Dakota State University. He said the transcriptome can be used somewhat like a map — it records the genes the plant uses to reach certain goals.

A transcriptome is the small portion of the DNA of an organism that is transcribed into molecules of ribonucleic acid, or RNA. When DNA is transcribed into what is called “messenger RNA,” it enables the organism to carry out instructions about building and maintaining cells. Scientists can decode those instructions to determine what particular DNA sequences do.

In an article in the September 2010 issue of The Plant Genome, Gonzalez and his colleagues discussed one of the first studies of the prairie cordgrass transcriptome. Prairie cordgrass is being viewed as a species suitable for producing biomass to make biofuels. One of the reasons scientists are interested in prairie cordgrass is because it yields extraordinarily well while tolerating wet conditions, high salinity or poorly aerated soils in low areas unsuitable for growing conventional crops. But it can also survive in open arid prairies.

Gonzalez said one obvious benefit from studying the transcriptome of a plant such as prairie cordgrass is to enable plant breeders to use marker-assisted selection in order to deliberately include gene sequences that confer desirable traits.

In the study, scientists used four tissues of prairie cordgrass to produce 556,198 expressed sequence tags, or portions of expressed genes. They assembled these into 26,302 “contigs,” or overlapping DNA segments from the same gene.

“We calculated probably 40 percent of the genes in prairie cordgrass, or more than 20,000,” Gonzalez said. “We’re starting to be able to look at the genes involved in particular traits. For example, for biofuels, for cellulosic ethanol production, cell wall composition is very important. We can actually look at the genes that are related to that cell wall composition so that we can study the variations of those genes. It can help the breeders eventually to select populations of prairie cordgrass with better composition.”

Gonzalez said cell walls — primarily made up of cellulose, hemicellulose, and lignin — are largely what remains when prairie cordgrass or some other biomass grass has been harvested and allowed to dry.

Cellulose and hemicellulose are carbohydrates that can be transformed into simple sugars that can be fermented. Lignin can’t be broken down by fermentation, though it can be isolated by other treatments.

The genes involved in the lignin biosynthesis pathway have been very well studied in other grasses, and the genes across the grasses are very similar. That will be one area of ongoing research for Gonzalez and his colleagues.

The synthesis of cellulose or hemicellulose is much more complex and involves many more enzymes. That is also an area of further research for the group, though those pathways will take longer to unravel, he said.

Scientists are also interested in the morphological development of the plant because that’s what supports the yield of the plant through many seasons — how the plant develops underground and starts growing at beginning of the season, how it goes into dormancy in fall, how it reactivates itself next season.

That is why current research efforts to decipher the plant’s genetic information are so important, Gonzalez said.

The research is funded in part by a federal grant of $420,000. The grant is from a joint program of the U.S. Department of Agriculture and the Department of Energy to promote biofuels research.

Gonzalez’ co-authors in the study were Kristene Gedye, Arvid Boe and Vance Owens of the Department of Plant Science at SDSU; Yuguang Ban and Xijin Ge of SDSU’s Department of Mathematics and Statistics; Jyothi Thimmapuram, Fengjie Sun, and Chris Wright of the University of Illinois at Urbana-Champaign; and Shahjahan Ali of Saudi Arabia’s King Abdullah University of Science and Technology.

Lance Nixon | Newswise Science News
Further information:
http://www.sdstate.edu

Further reports about: Biofuels Cellulose DNA DNA segments DNA sequence RNA Science TV crop hemicellulose prairie cordgrass

More articles from Life Sciences:

nachricht During HIV infection, antibody can block B cells from fighting pathogens
14.08.2018 | NIH/National Institute of Allergy and Infectious Diseases

nachricht First study on physical properties of giant cancer cells may inform new treatments
14.08.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

'Building up' stretchable electronics to be as multipurpose as your smartphone

14.08.2018 | Information Technology

During HIV infection, antibody can block B cells from fighting pathogens

14.08.2018 | Life Sciences

First study on physical properties of giant cancer cells may inform new treatments

14.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>