Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover that SLC2A9 is a high-capacity urate transporter in humans

07.10.2008
An international team of researchers led by Professors Mark Caulfield and Patricia Munroe, from the William Harvey Research Institute at Barts and The London School of Medicine and Dentistry with Chris Cheeseman at the University of Alberta in Canada and Kelle Moley at the University of Washington in USA, have shown that the SLC2A9 gene, which encodes a glucose transporter, is also a high-capacity urate transporter, and thus possibly a new drug target for gout. Their findings are published in this week's PLoS Medicine (7 October 2008).

Several urate transporters have already been identified but recently, using an approach called genome-wide association scanning, Caulfield and others found that some genetic variants of a human gene called SLC2A9 are more common in people with high serum urate levels than in people with normal levels. SLC2A9 encodes a glucose transporter (a protein that helps to move the sugar glucose through cell membranes) and is highly expressed in the kidney's main urate handling site. Professor Caulfield and his team investigated the possibility that the protein made by the SLC2A9 gene might be a urate transporter and tested whether genetic variations in SLC2A9 might be responsible for the association between serum urate levels and high blood pressure.

The team first expressed SLC2A9 in frog eggs, a type of cell that does not have its own urate transporter. They found that SLC2A9 transported urate about 50 times faster than glucose, and that glucose facilitated SLC2A9-mediated urate transport. Similarly, over expression of SLC2A9 in human embryonic kidney cells more than doubled their urate uptake. Conversely, when the researchers used a technique called RNA interference to reduce the expression of mouse SLC2A9 in mouse cells that normally makes this protein, urate transport was reduced. Researchers then looked at two genetic variations within SLC2A9 that vary between individuals (so-called single polynucleotide polymorphisms) in nearly 900 men who had had their serum urate levels and urinary urate excretion rates measured. They found that certain genetic variations at these two sites were associated with increased serum urate levels and decreased urinary urate excretion. Finally, the researchers used a statistical technique called meta-analysis to look for an association between one of the SLC2A9 gene variants and blood pressure. In two separate meta-analyses that together involved more than 20,000 participants in several studies, there was no association between this gene variant and blood pressure.

Overall, these findings indicate that SLCA9 is a high capacity urate transporter, and suggest that this protein plays an important part in controlling serum urate levels. They provide confirmation that common genetic variants in SLC2A9 affect serum urate levels to a marked degree, although they do not show exactly which genetic variant is responsible for increasing serum urate levels. They also provide important new insights into how the kidneys normally handle urate and suggest ways in which this essential process may sometimes go wrong. The findings could eventually lead to new treatments for gout and possibly for other diseases that are associated with increased serum urate levels.

Professor Mark Caulfield said: "This MRC funded study shows how a team of international researchers can find a completely unsuspected mechanism for urate handling in the kidney. Such discoveries could pave the way for new medicines."

Citation: Caulfield MJ, Munroe PB, O'Neill D, Witkowska K, Charchar FJ, et al. (2008) SLC2A9 is a high-capacity urate transporter in humans. PLoS Med 5(9): e197. doi:10.1371/journal.pmed.0050197

For further information contact:
Alex Fernandes
Communications Office
Queen Mary, University of London
Tel: 020 7882 7910
email: a.fernandes@qmul.ac.uk
Barts and The London School of Medicine and Dentistry
Barts and The London School of Medicine and Dentistry – at Queen Mary, University of London - offers international levels of excellence in research and teaching while serving a population of unrivalled diversity amongst which cases of diabetes, hypertension, heart disease, TB, oral disease and cancers are prevalent, within east London and the wider Thames Gateway. Through partnership with our linked trusts, notably Barts and The London NHS Trust, and our associated University Hospital trusts – Homerton, Newham, Whipps Cross and Queen's – the School's research and teaching is informed by an exceptionally wide ranging and stimulating clinical environment.

At the heart of the School's mission lies world class research, the result of a focused programme of recruitment of leading research groups from the UK and abroad and a £100 million investment in state-of-the-art facilities. Research is focused on translational research, cancer, cardiology, clinical pharmacology, inflammation, infectious diseases, stem cells, dermatology, gastroenterology, haematology, diabetes, neuroscience, surgery and dentistry.

The School is nationally and internationally recognised for research in these areas, reflected in the £40 million it attracts annually in research income. Its fundamental mission, with its partner NHS Trusts, and other partner organisations such as CRUK, is to ensure that that the best possible clinical service is underpinned by the very latest developments in scientific and clinical teaching, training and research.

Alex Fernandes | EurekAlert!
Further information:
http://www.qmul.ac.uk

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>