Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Discover Brain's Memory 'Buffer' in Single Cells

27.01.2009
Individual nerve cells in the front part of the brain can hold traces of memories on their own for as long as a minute and possibly longer, researchers at UT Southwestern Medical Center have found.

The study, available online and appearing in the February issue of Nature Neuroscience, is the first to identify the specific signal that establishes nonpermanent cellular memory and reveals how the brain holds temporary information.

It has implications for addiction, attention disorders and stress-related memory loss, said Dr. Don Cooper, assistant professor of psychiatry at UT Southwestern and senior author of the study conducted in mice.

Researchers have known that permanent memories are stored when the excitatory amino acid glutamate activates ion channels on nerve cells in the brain to reorganize and strengthen the cells’ connections with one another. But this process takes minutes to hours to turn on and off and is too slow to buffer, or temporarily hold, rapidly incoming information.

The researchers found that rapid-fire inputs less than a second long initiate a cellular memory process in single cells lasting as long as minute, a process called metabotropic glutamate transmission. This transmission in the most highly evolved brain region holds moment-to-moment information.

These cellular findings have implications for how the human brain stores rapidly changing information, like the temporary memory a card shark uses when counting cards in a game of Black Jack and, as casinos have figured out, it is the memory that is most sensitive to the disruptive effects of alcohol and noisy distractions, Dr. Cooper said.

“It’s more like RAM [random access memory] on a computer than memory stored on a disk,” Dr. Cooper said. “The memory on the disk is more permanent and you can go back and access the same information repeatedly. RAM memory is rewritable temporary storage that allows multitasking.”

The researchers identified in mice a specific metabotropic glutamate receptor called mGluR5 that, when turned on, starts a signaling cascade using calcium to hold a memory trace. This fast, short-term memory process happens inside individual cells; with long-term memory, additional proteins cause slow reorganization between cells in a network to establish a permanent memory.

Researchers examined brain cells from mice using nanoscale electrodes to measure the memory formation process.

To further understand how this short-term memory process relates to addiction, researchers applied the neurochemical dopamine to the memory buffer nerve cells. Dopamine is normally needed at an optimal level for an individual to focus attention and engage in fast decision-making memory, but drugs of abuse overload the brain with a surge of dopamine. In the study, researchers found that an experimental drug that activates a specific type of dopamine receptor “focused” the nerve cells, making the memory trace less susceptible to distraction.

When researchers employed an animal model of drug addiction using cocaine, they also found that repeated exposure to addictive levels of cocaine reduced memory trace activation in the memory buffer cells. When researchers then activated dopamine signaling in the “addicted” animals, essentially adding more dopamine to their systems, no focusing effect was observed.

“This makes sense because we know from human and animal models of addiction, when a decision using working memory has to be made, brain imaging shows a deficit in the same area of the brain we looked at,” Dr. Cooper said. “It all fits together.”

Researchers next plan to identify the ion channel responsible for holding and regenerating a memory trace. Their goal is to develop new pharmacological and genetic tools that will allow them to manipulate and possibly expand decision-making memory capacity.

“If we can identify and manipulate the molecular components of memory, we can develop drugs that boost the ability to maintain this memory trace to hopefully allow a person to complete tasks without being distracted,” Dr. Cooper said. “For the person addicted to drugs, we could strengthen this part of the brain involved with decision-making, allowing them to ignore impulses and weigh negative consequences of their behavior before they abuse drugs.”

Other researchers from UT Southwestern involved in the study in Dr. Cooper’s laboratory were Dr. Fang-Min Lu, assistant instructor of psychiatry; Melissa Fowler, a graduate student in psychiatry; Christopher Phillips, a medical student; and Emin Ozkan, student research assistant in physiology. Lead author Kyriaki Sidiropoulou from Rosalind Franklin University of Medicine and Science’s Chicago Medical School and researchers from Ohio State University also participated in the study.

The study was funded by the National Institute on Drug Abuse; National Alliance for Research on Schizophrenia and Depression; the Alexander S. Onassis Public Benefit Foundation; and the Department of Veterans Affairs.

Visit http://www.utsouthwestern.org/neurosciences to learn more about UT Southwestern’s clinical services in neurosciences, including psychiatry.

Dr. Don Cooper -- http://www.utsouthwestern.edu/findfac/professional/0,2356,65272,00.html

LaKisha Ladson | Newswise Science News
Further information:
http://www.utsouthwestern.edu

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>