Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover 3 genes that increase risk of severe obesity in kids and adults

21.01.2009
McGill scientists play key role in international genome-wide association study

European and Canadian researchers have, for the first time, drawn a map of genetic risk factors that can lead to two forms of severe obesity: early-onset obesity in children, and morbid obesity in adults.

A genetic study of 1,380 Europeans with early-onset and morbid adult obesity was led by French researchers Dr. David Meyre, of the Institut national de la santé et de la recherche médicale (Inserm), and Dr. Philippe Froguel, director of the Centre National de la Recherche Scientifique (CNRS). Dr. Rob Sladek, Dr. Constantin Polychronakos and Dr. Alexandre Montpetit, of McGill University and the McGill University and Génome Québec Innovation Centre, made key contributions to the discovery, along with researchers from France, Britain, Finland, Switzerland and Germany.

The results were published Jan. 19 in the journal Nature Genetics. Finding the genetic cause of a medical problem can often lead researchers along the right path toward an eventual treatment or cure or to help identify people who might be at risk.

"The idea was not just to look at run-of-the-mill obesity, but look for genetic factors that may affect people who have more severe problems with their weight," said Dr. Sladek, an assistant professor in the Department of Human Genetics and Endocrinology. "This includes children who become obese at a young age, before the age of six. We also studied the genomes of adults who had a familial history of severe obesity, with a body-mass index greater than 40." People are generally defined as "overweight" if they have a body-mass index greater than 25.

"The family approach being undertaken by our collaboration with our colleagues in France is going to become important for future large-scale genetic studies," Sladek continued. "Our suspicion is that a lot of the genetic changes that make people obese will turn out to be variants that run in families or in segments of the population, rather than things that are very common across the population. In terms of diabetes, we think that perhaps 90 per cent of the genetic risk could come from these familial or even personal genetic variants."

"We are proud of this announcement, which once again confirms the scientific excellence and talent of Québec's scientists," said Paul L'Archevêque, President and CEO of Génome Québec. "These findings, which are the direct result of studies co-financed by Génome Québec, clearly show the strategic role of genomics in the search for solutions to improve human health. We would also like to underline the cooperation among the institutes, an initiative that made this major advance possible. Congratulations to the McGill University and Génome Québec Innovation Centre team, and especially to Alexandre Montpetit who trained a group from CNRS on genotyping data analysis on the Illumina platform."

Mark Shainblum | EurekAlert!
Further information:
http://www.mcgill.ca

More articles from Life Sciences:

nachricht Colorectal cancer risk factors decrypted
13.07.2018 | Max-Planck-Institut für Stoffwechselforschung

nachricht Algae Have Land Genes
13.07.2018 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Research finds new molecular structures in boron-based nanoclusters

13.07.2018 | Materials Sciences

Algae Have Land Genes

13.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>