Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research uncovers key to understanding cause of lupus

01.02.2011
Potentially impacting future diagnosis and treatment of lupus, an immune illness affecting more than 5 million people worldwide, researchers at the Virginia-Maryland Regional College of Veterinary Medicine at Virginia Tech have likely uncovered where the breakdown in the body's lymphocyte molecular regulatory machinery is occurring.

Rujuan Dai, research scientist, and her colleagues in the veterinary college's Department of Biomedical Sciences and Pathobiology, have discovered a "common set of dysregulated miRNAs in murine lupus models." The research, which appears in the Dec. 13, 2010, issue of the scientific journal PLoS One, was funded in part by the Lupus Foundation of America.

Lupus is a chronic autoimmune disease of connective tissue that causes the body's immune system to become hyperactive and attack normal, healthy tissue. This results in symptoms such as inflammation, swelling, and possible damage to joints, skin, kidneys, blood, the heart, or lungs.

In an effort to better understand epigenetic factors in the causes of lupus, researchers at the veterinary college focused on microRNA (miRNA), seeking to determine potential impairments of genetic regulation. These small RNAs control gene expression by directly regulating specific target messenger RNAs via inhibition of their translation or inducing their degradation.

"Micro RNAs perform these duties in an orderly fashion," said S. Ansar Ahmed, professor of immunology and head of the Department of Biomedical Sciences and Pathobiology at the college. "White blood cells use miRNA to regulate antibodies and other proteins in response to infection or any kind of assault."

The researchers chose three strains of autoimmune-prone mice that have different background genomes and manifest lupus-like disease at different ages. For example, one mouse strain began developing lupus-like disease around 3 months of age, and another mouse strain developed severe lupus much later, at 9 months of age.

Findings show that all three lupus strains manifest a common dysregulated pattern of miRNAs despite differences in their background genes. Importantly, this expression of miRNAs became evident only at an age when the mice manifest lupus.

The identification of these common miRNAs presents a new way of understanding lupus development. The researchers at the veterinary college believe these studies will potentially open a new approach for diagnosis and treatment of the illness by altering lupus-specific miRNAs in lymphocytes.

"In the short term, we want to use our better understanding of the disease to develop a tool in the form of molecular markers for early, reliable diagnosis," said Ahmed. The long-term goal, Ahmed added, is to offer entirely new therapeutic approaches, such as manipulation of lupus-related miRNA, to correct pathological conditions.

Having identified signature miRNA changes in lupus disease, the next step for the researchers is to prove they can really switch off the disease.

"If we can do this in a mouse model and then to cure other animals, hopefully it can one day be done in humans. This is long-range research but modern technology is narrowing the time it takes from mouse to human — speeding translation," said Ahmed.

Co-authors on the article are Yan Zhang of the Virginia Bioinformatics Institute (VBI) at Virginia Tech; Deena Khan, biomedicine and veterinary science Ph.D. candidate; Bettina Heid, laboratory specialist with the college; David Caudell, assistant professor of biomedical science; and Oswald Crasta of VBI. The articles is on line at http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0014302

Ahmed and Dai previously published work in the journal Blood, which led them to look at possible changes in expression of microRNAs in autoimmune lupus. They have also been invited to write a review article for a special issue of Translational Research that is devoted to the topic of microRNAs.

The Virginia-Maryland Regional College of Veterinary Medicine is a two-state, three-campus professional school operated by the land-grant universities of Virginia Tech in Blacksburg and the University of Maryland at College Park. Its flagship facilities, based at Virginia Tech, include the Veterinary Teaching Hospital, which treats more than 40,000 animals annually. Other campuses include the Marion duPont Scott Equine Medical Center in Leesburg, Va., and the Avrum Gudelsky Veterinary Center at College Park, home of the Center for Public and Corporate Veterinary Medicine. The college annually enrolls approximately 500 Doctor of Veterinary Medicine and graduate students, is a leading biomedical and clinical research center, and provides professional continuing education services for veterinarians practicing throughout the two states. Virginia Tech, the most comprehensive university in Virginia, is dedicated to quality, innovation, and results to the commonwealth, the nation, and the world.

Eric McKeeby | EurekAlert!
Further information:
http://www.vt.edu

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>