Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New research project aims to improve cancer therapies using type I interferons

23.04.2013
German Cancer Aid grants EUR 180,000 in support of a new research project at the Mainz University Medical Center

The immune system plays a decisive role in the fight against tumor cells. However, when tumor cells themselves prevent activation of the immune system, the immune system fails to destroy cancer cells. The cancer drug interferon-α could probably neutralize this blockade. This cytokine is being used successfully to treat various forms of cancer.

However, some patients experience undesirable autoimmune reactions on administration of the drug. The German Cancer Aid (Deutsche Krebshilfe e.V.) is donating EUR 180,000 to fund a research project at the University Medical Center of Johannes Gutenberg University Mainz that is to identify mechanisms underlying the effects of the cancer drug interferon-α (IFN-α) when it comes to fighting cancer cells by means of the blockade of so-called immunological tolerance processes. In addition, the researchers want to discover novel approaches to increase the efficacy of type I interferons in the treatment of cancer.

Interferon-α can trigger autoimmune reactions in patients, i.e., pathological reactions of the immune system. Interferon-α has been seen to date as an active substance that boosts the immune system and fights tumor cells directly. It is used, for example, in the therapy of malignant melanomas, certain forms of leukemia and cutaneous T-cell lymphomas. "The immune system is usually able to effectively destroy cancer cells. At the same time, however, there are also so-called tumor-associated tolerance processes that protect the tumor cells from being destroyed by the immune system.

Autoimmune reactions, which are known side effects of therapies with IFN-α, may indicate that this anti-tumor treatment blocks tolerance mechanisms and thus improves the immune system's natural ability for tumor rejection," explained Professor Dr. Kerstin Steinbrink, senior physician at the Department of Dermatology of the Mainz University Medical Center, which is supervising the research project "Analysis of the Effect of Type I Interferons on Immunological Tolerance Processes" funded by the German Cancer Aid. The purpose of this project is to analyze the effects of IFN-α and other type I interferons on various immune cells that exhibit tolerogenic potential in vitro and also in melanoma patients.

The knowledge gained through this project should contribute to the development of improved therapy strategies for overcoming tolerance mechanisms associated with tumors. An additional objective is to enhance the efficacy of therapy with type I interferons. Steinbrink's research team is looking to reduce potential side effects as much as possible.

"This research project is taking a patient-oriented approach. The research team led by Professor Dr. Kerstin Steinbrink will profit from its expertise in the area of immunological tolerance that it has gained over several years," said Professor Dr. Ulrich Förstermann, Chief Scientific Officer of the Mainz University Medical Center.

Weitere Informationen:

http://www.uni-mainz.de/presse/16329_ENG_HTML.php - press release ;
http://www.unimedizin-mainz.de - Mainz University Medical Center

Petra Giegerich | idw
Further information:
http://www.unimedizin-mainz.de

More articles from Life Sciences:

nachricht Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View
22.06.2018 | University of Sussex

nachricht New cellular pathway helps explain how inflammation leads to artery disease
22.06.2018 | Cedars-Sinai Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>