Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mechanism for regulation of growth and differentiation of adult muscle stem cells is revealed

10.12.2007
During muscle regeneration, which is a natural response to injury and disease, environmental cues cause adult muscle stem cells (satellite cells) to shift from dormancy to actively building new muscle tissue. Although the signaling pathways controlling muscle regeneration are fairly well known, how these signals lead to altered chromatin structure remains undiscovered.

A group of scientists at the Burnham Institute for Medical Research in La Jolla, CA, analyzed the mechanism by which certain cellular signaling cues cause epigenetic modifications when released within the regenerative microenvironment, thus controlling the expression of genes that regulate growth and differentiation of muscle stem cells that repair injured muscle.

In a recent publication in Molecular Cell, the scientific group, led by Pier Lorenzo Puri, MD, Ph.D., shows how two signaling pathways, PI3K/AKT and p38, work together to assemble components of the protein complexes responsible for muscle-specific transcription, and how each pathway is responsible for a distinct step in the transcription process. Additionally, the team was able to pharmacologically separate these two steps, showing that selective interference with either cascade leads to incomplete assembly of protein complexes, thus preventing muscle-specific gene expression. The results point to possible pharmacological avenues for selective control of gene expression in adult muscle stem cells that may have therapeutic potential in regenerative medicine.

Dr. Puri is an Assistant Professor in the Tumor Development Program at the Burnham Institute for Medical Research. The study was conducted in collaboration with the Dulbecco Telethon Institute at Fondazione Santa Lucia/EBRI; Department of Surgery, University of Virginia, Charlottesville; Molecular Oncology Research Institute, Tufts-New England Medical Center; and The Whittier Institute.

... more about:
»Medical »Stem »pathway

About Burnham Institute for Medical Research

Burnham Institute for Medical Research conducts world-class collaborative research dedicated to finding cures for human disease, improving quality of life, and thus creating a legacy for its employees, donors, and community. The Institute is headquartered in La Jolla, CA where it was established as a nonprofit, public benefit corporation in 1976 and is now home to three major centers: a National Cancer Institute-designated Cancer Center; the Del E. Webb Center for Neurosciences, Aging and Stem Cell Research; and the Infectious and Inflammatory Disease Center. In 2006, Burnham established a center for bionanotechnology research at the University of California, Santa Barbara. Burnham is currently establishing a campus at Lake Nona in Orlando, Florida that will focus on diabetes and obesity research and will expand the Institute’s drug discovery capabilities. Today, Burnham employs more than 800 people and ranks consistently among the world’s top 25 organizations for its research impact and among the top four research institutes nationally for NIH grant funding.

Andrea Moser | EurekAlert!
Further information:
http://www.burnham.org

Further reports about: Medical Stem pathway

More articles from Life Sciences:

nachricht Solving the efficiency of Gram-negative bacteria
22.03.2019 | Harvard University

nachricht Bacteria bide their time when antibiotics attack
22.03.2019 | Rice University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Solving the efficiency of Gram-negative bacteria

22.03.2019 | Life Sciences

Bacteria bide their time when antibiotics attack

22.03.2019 | Life Sciences

Open source software helps researchers extract key insights from huge sensor datasets

22.03.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>