Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MIT sculpts 3D particles with light

03.12.2007
Medical applications could include diagnostics, tissue engineering

MIT engineers have used ultraviolet light to sculpt three-dimensional microparticles that could have many applications in medical diagnostics and tissue engineering. For example, they could be designed to act as probes to detect certain molecules, such as DNA, or to release drugs or nutrients.

The new technique offers unprecedented control over the size, shape and texture of the particles. It also allows researchers to design particles with specific chemical properties, such as porosity (a measure of the void space in a material that can affect how fast different molecules can diffuse through the particles).

“With this method, you can rationally design particles, and precisely place chemical properties,” said Patrick Doyle, associate professor of chemical engineering. Doyle is one of the authors of a paper on the work that will appear in the Dec. 3 issue of the journal Angewandte Chemie, published by the German Chemical Society.

... more about:
»Control »Engineering »LIGHT »Mask »nutrient »size

The research team started with a method that Doyle and his students reported in a 2006 issue of Nature Materials to create two- dimensional particles. Called continuous flow lithography, this approach allows shapes to be imprinted onto flowing streams of liquid polymers. Wherever pulses of ultraviolet light strike the flowing stream of small monomeric building blocks, a reaction is set off that forms a solid polymeric particle. They have now modified that method to add three-dimensionality.

This process can create particles very rapidly: Speeds range from 1,000 to 10,000 particles per second, depending on the size and shape of the particles. The particles range in size from about a millionth of a meter to a millimeter.

The team's new process works by shining ultraviolet light through two transparency masks, which define and focus the light before it reaches the flowing monomers. The first mask, which controls the size and shape of the particles, is part of the technique reported last year by Doyle and his students. The second mask, which is based on MIT professor Edwin Thomas' work in multibeam lithography, adds three- dimensional texture and other physical traits, such as porosity.

The collaboration sprung from a conversation between Ji-Hyun Jang, a postdoctoral associate in Thomas' lab, and Dhananjay Dendukuri, a recent Ph.D. recipient in Doyle's lab, who are also authors on the paper.

“It's very easy to integrate the (second) phase mask into the microfluidic apparatus,” said Thomas, Morris Cohen Professor of Materials Science and Engineering and head of the Department of Materials Science and Engineering. “Professor Doyle was controlling the overall shape, and now what we're doing is controlling these inner labyrinth networks.”

Adding inner texture is desirable because it increases the particles'
surface-to-volume ratio, which means if the particle is loaded with probes, there are more potential binding sites for target molecules.

In a paper published in Science earlier this year, Doyle and MIT graduate student Daniel Pregibon showed that the particles can be used as probes to identify DNA and other molecules.

Other applications for the particles include tissue engineering. For example, they could form a scaffold that would both provide structural support for growing cells and release growth factors and other nutrients. The particles can be designed so diffusion occurs in a particular direction, allowing researchers to control the direction of nutrient flow.

Alan Hatton, the Ralph Landau Professor of Chemical Engineering Practice, is also an author on the paper.

This research was funded by the U.S. Army Research Office through the MIT Institute for Soldier Nanotechnologies.

Elizabeth A. Thomson | MIT News Office
Further information:
http://www.mit.edu

Further reports about: Control Engineering LIGHT Mask nutrient size

More articles from Life Sciences:

nachricht Nonstop Tranport of Cargo in Nanomachines
20.11.2018 | Max-Planck-Institut für molekulare Zellbiologie und Genetik

nachricht Researchers find social cultures in chimpanzees
20.11.2018 | Universität Leipzig

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nonstop Tranport of Cargo in Nanomachines

Max Planck researchers revel the nano-structure of molecular trains and the reason for smooth transport in cellular antennas.

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

Nonstop Tranport of Cargo in Nanomachines

20.11.2018 | Life Sciences

Researchers find social cultures in chimpanzees

20.11.2018 | Life Sciences

When AI and optoelectronics meet: Researchers take control of light properties

20.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>