Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UD researchers set new chemical world record

26.11.2007
Chemists from the University of Delaware, in collaboration with a colleague at the University of Wisconsin, have set a new world record for the shortest chemical bond ever recorded between two metals, in this case, two atoms of chromium.

The distance? A minuscule 1.803 Ångstroms, which is on the order of a billionth of the thickness of a human hair.

The chemists weren't driven by the Guinness Book of World Records or even a friendly bet. As is often the case in science, they discovered the molecule, which has a quintuple (i. e., five-fold) bond, quite by accident.

“Sometimes things like this just happen,” said Klaus Theopold, professor and chairperson of the UD Department of Chemistry and Biochemistry.

... more about:
»Researcher »Theopold »World

Theopold and Kevin Kreisel, who graduated with his doctorate from UD in August and is now a postdoctoral researcher at the University of Wisconsin, made the finding, working with research associate Glenn Yap and postdoctoral fellow Olga Dmitrenko, both from UD, and Clark Landis, a colleague from the University of Wisconsin.

The research was reported in the Journal of the American Chemical Society.

Theopold has been researching the chemistry of chromium for a long time. The metal is an important industrial catalyst for making plastics such as polyethylene.

“We discovered this interesting looking molecule and realized that it had an extremely short distance between the metal atoms,” Theopold said.

Using an analytical technique called X-ray diffraction, the scientists were able to look directly at the atomic structure of the new molecule and measure the distance between the chromium atoms.

A rule-of-thumb in chemistry, Theopold said, is that bond length and bond strength go together, so it's likely that the metal-metal bond is a strong one, although Theopold said no one knows for sure.

“This molecule is probably not practically useful. We're not going to get a patent here or cure cancer,” Theopold noted. “Records define the range in which things can exist. It's just an interesting molecule from a fundamental scientific standpoint.”

And those teeny-tiny bonds do mark a new world record for chemistry.

Before the UD discovery, Theopold said, the last record, achieved by researchers at Texas A&M University, stood for nearly 30 years.

Tracey Bryant | EurekAlert!
Further information:
http://www.udel.edu

Further reports about: Researcher Theopold World

More articles from Life Sciences:

nachricht Nanocages in the lab and in the computer: how DNA-based dendrimers transport nanoparticles
19.10.2018 | University of Vienna

nachricht Less animal experiments on the horizon: Multi-organ chip awarded
19.10.2018 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Goodbye, silicon? On the way to new electronic materials with metal-organic networks

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

Silicon, a so called semiconductor, is currently widely employed for the development of components such as solar cells, LEDs or computer chips. High purity...

Im Focus: Storage & Transport of highly volatile Gases made safer & cheaper by the use of “Kinetic Trapping"

Augsburg chemists present a new technology for compressing, storing and transporting highly volatile gases in porous frameworks/New prospects for gas-powered vehicles

Storage of highly volatile gases has always been a major technological challenge, not least for use in the automotive sector, for, for example, methane or...

Im Focus: Disrupting crystalline order to restore superfluidity

When we put water in a freezer, water molecules crystallize and form ice. This change from one phase of matter to another is called a phase transition. While this transition, and countless others that occur in nature, typically takes place at the same fixed conditions, such as the freezing point, one can ask how it can be influenced in a controlled way.

We are all familiar with such control of the freezing transition, as it is an essential ingredient in the art of making a sorbet or a slushy. To make a cold...

Im Focus: Micro energy harvesters for the Internet of Things

Fraunhofer IWS Dresden scientists print electronic layers with polymer ink

Thin organic layers provide machines and equipment with new functions. They enable, for example, tiny energy recuperators. In future, these will be installed...

Im Focus: Dynamik einzelner Proteine

Neue Messmethode erlaubt es Forschenden, die Bewegung von Molekülen lange und genau zu verfolgen

Das Zusammenspiel aus Struktur und Dynamik bestimmt die Funktion von Proteinen, den molekularen Werkzeugen der Zelle. Durch Fortschritte in der...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Conference to pave the way for new therapies

17.10.2018 | Event News

Berlin5GWeek: Private industrial networks and temporary 5G connectivity islands

16.10.2018 | Event News

5th International Conference on Cellular Materials (CellMAT), Scientific Programme online

02.10.2018 | Event News

 
Latest News

Nanocages in the lab and in the computer: how DNA-based dendrimers transport nanoparticles

19.10.2018 | Life Sciences

Thin films from Braunschweig on the way to Mercury

19.10.2018 | Physics and Astronomy

App-App-Hooray! - Innovative Kits for AR Applications

19.10.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>