Enzyme promotes fat formation

The enzyme, TPPII, has previously been linked to making people feel hungry, but Jonathan Graff and colleagues now show that it may be even more deeply involved in causing obesity.

The team found that TPPII actually stimulated the formation of fat cells in worms and mammalian cells and that by reducing it, fat stores decreased. Mice with lower levels of TPPII were thinner than their wild type littermates, although their food intake was comparable.

The authors hope that TPPII could be exploited as a drug target to help fight increasing levels of obesity; inhibiting the enzyme would both increase feelings of fullness after eating and decrease build up of fat cells.

Media Contact

Jonathan Graff alfa

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Why getting in touch with our ‘gerbil brain’ could help machines listen better

Macquarie University researchers have debunked a 75-year-old theory about how humans determine where sounds are coming from, and it could unlock the secret to creating a next generation of more…

Attosecond core-level spectroscopy reveals real-time molecular dynamics

Chemical reactions are complex mechanisms. Many different dynamical processes are involved, affecting both the electrons and the nucleus of the present atoms. Very often the strongly coupled electron and nuclear…

Free-forming organelles help plants adapt to climate change

Scientists uncover how plants “see” shades of light, temperature. Plants’ ability to sense light and temperature, and their ability to adapt to climate change, hinges on free-forming structures in their…

Partners & Sponsors