Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists identify fundamental brain defect, probable drug target in fragile X syndrome

18.09.2007
Scientists have discovered how the gene mutation responsible for fragile X syndrome--the most common inherited form of mental retardation--alters the way brain cells communicate. In neurons cultured from laboratory rats, the scientists also were able to reverse the effects of the mutation using a drug targeted to the specific site in an upstream pathway of the defect. The finding could lead to the development of human therapies for this previously untreatable condition.

The research was led by Stephen T. Warren, PhD, Timmie professor and chair of human genetics in Emory University School of Medicine, and Gary J. Bassell, PhD, Emory professor of cell biology. It will be reported in the Proceedings of the National Academy of Sciences (PNAS) the week of Sept. 17. Lead author is Emory genetics postdoctoral fellow Mika Nakamoto.

"We have now explained the fundamental defect in the brain in fragile X syndrome and, most importantly, found that we can correct this problem in the laboratory," says Dr. Warren. "This is quite exciting, progressing from the identification of the gene in 1991 to now believing we will be able to treat a previously untreatable condition. Our next steps will be to continue screening and identifying the best drugs to try and correct the deficiencies that result from fragile X syndrome."

Fragile X syndrome is caused by a mutation in the FMR1 gene on the X chromosome. A region of the mutated FMR1 gene repeats a trinucleotide sequence of DNA bases--CGG--between 200 and 1,000 times, rather than the normal 6 to 55 repeats in normal individuals. The abnormal trinucleotide repeats cause the absence of the FMR protein normally produced by the gene.

... more about:
»AMPAR »Drug »FMRP »Syndrome »Target »discovered »mGluR5 »receptor

Dr. Warren and his colleagues led an international team that discovered the FMR1 gene in 1991. They later characterized the FMR protein (FMRP) and developed diagnostic tests for fragile X syndrome. Ever since, their research has focused on identifying the specific consequences of FMRP deficiency in the brain and finding targets for drug therapy.

Previously, Dr. Warren, working with scientists at Brown University, discovered that the absence of FMRP in the mouse model of fragile X syndrome leads to an abnormality in synaptic strength, or the degree by which neurons communicate, that suggested an abnormality of AMPAR receptors on the surface of neurons. These receptors are necessary for neurons to connect with each other at synapses, allowing the communication that leads to learning and memory. Drs. Warren and Bassell discovered that in fragile X syndrome, AMPAR receptors move in and out of the surface neuronal cells more frequently and destabilize the synaptic connections. The Emory scientists and others believe this is the ultimate defect in fragile X syndrome.

Using cultured neurons in the laboratory, manipulated to model fragile X syndrome, the Emory scientists were able to target the mGluR5 receptor with an mGluR5 antagonist--MPEP. Since the mGluR5 receptor is upstream of FMRP and has an opposing influence over the neuron, tempering mGluR5 stimulation should normalize the consequence of the loss of FMRP. Indeed, the Emory scientists found the targeted MPEP therapy rescued the abnormal AMPAR receptor movement on the surface of the FMRP-deficient neurons.

"By adding a drug that antagonizes the mGluR5 receptor and signal, we were able to normalize the AMPAR receptor trafficking, and presumably allow the neurons to make appropriate synaptic connections," Dr. Warren says. "This gives us great hope that we will be able to develop treatments for patients with fragile X syndrome."

Holly Korschun | EurekAlert!
Further information:
http://www.emory.edu

Further reports about: AMPAR Drug FMRP Syndrome Target discovered mGluR5 receptor

More articles from Life Sciences:

nachricht Researchers target protein that protects bacteria's DNA 'recipes'
21.08.2018 | University of Rochester

nachricht Protein interaction helps Yersinia cause disease
21.08.2018 | Schwedischer Forschungsrat - The Swedish Research Council

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Air pollution leads to cardiovascular diseases

21.08.2018 | Ecology, The Environment and Conservation

Researchers target protein that protects bacteria's DNA 'recipes'

21.08.2018 | Life Sciences

A paper battery powered by bacteria

21.08.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>