Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Evolution of genomic imprinting

10.09.2007
How we come to express the genes of one parent over the other is now better understood through studying the platypus and marsupial wallaby – and it doesn’t seem to have originated in association with sex chromosomes.

New research published in the online open access journal, BMC Evolutionary Biology, has shed light on the evolution of genomic imprinting, in which specific genes on chromosomes that have been inherited from one parent are expressed in an organism, while the same genes on the chromosome inherited from the other parent are repressed.

Imprinting arises from some kind of ‘epigenetic memory’ – modifications to the DNA from one parent, such as the way the chromosomal material is packaged, that do not allow particular genes to be expressed. The reasons why imprinting evolved are not understood. It is known, however, that different patterns of imprinting occur in different classes of mammals, with some classes of mammals exhibiting the phenomenon and others not. Because the evolutionary relationship between mammals is well documented, patterns of imprinting in the different genomes can provide important clues about the evolution of imprinting.

One theory is that imprinted genes arose from sex chromosomes, which can be epigenetically ‘shut down’ to control the dosage of genes. Another idea is that imprinting arose from an ancestral chromosome that was itself imprinted.

... more about:
»Evolution »imprinted »parent »platypus

A group led by father and daughter, Malcolm and Anne Ferguson-Smith, of the University of Cambridge tested these ideas by mapping known sequences of imprinted genes in two mammals, the monotreme platypus and the marsupial wallaby, which occupy distinct positions in mammalian evolution.

The results of the distribution studies suggest that imprinted genes were not located on an ancestrally imprinted chromosome, nor were they associated with sex chromosomes. Rather it appears that imprinting evolved in a stepwise, adaptive way, with each gene or cluster becoming imprinted as the need arose.

The study is also important because despite its evolutionary importance, the platypus remains cytogenetically under-characterised. By linking specific sequences to particular chromosomes, the researchers have pinpointed important markers on the platypus genome.

Charlotte Webber | EurekAlert!
Further information:
http://www.biomedcentral.com

Further reports about: Evolution imprinted parent platypus

More articles from Life Sciences:

nachricht Seeing on the Quick: New Insights into Active Vision in the Brain
15.08.2018 | Eberhard Karls Universität Tübingen

nachricht New Approach to Treating Chronic Itch
15.08.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Unraveling the nature of 'whistlers' from space in the lab

15.08.2018 | Physics and Astronomy

Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide

15.08.2018 | Earth Sciences

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>