Evolution of genomic imprinting

New research published in the online open access journal, BMC Evolutionary Biology, has shed light on the evolution of genomic imprinting, in which specific genes on chromosomes that have been inherited from one parent are expressed in an organism, while the same genes on the chromosome inherited from the other parent are repressed.

Imprinting arises from some kind of ‘epigenetic memory’ – modifications to the DNA from one parent, such as the way the chromosomal material is packaged, that do not allow particular genes to be expressed. The reasons why imprinting evolved are not understood. It is known, however, that different patterns of imprinting occur in different classes of mammals, with some classes of mammals exhibiting the phenomenon and others not. Because the evolutionary relationship between mammals is well documented, patterns of imprinting in the different genomes can provide important clues about the evolution of imprinting.

One theory is that imprinted genes arose from sex chromosomes, which can be epigenetically ‘shut down’ to control the dosage of genes. Another idea is that imprinting arose from an ancestral chromosome that was itself imprinted.

A group led by father and daughter, Malcolm and Anne Ferguson-Smith, of the University of Cambridge tested these ideas by mapping known sequences of imprinted genes in two mammals, the monotreme platypus and the marsupial wallaby, which occupy distinct positions in mammalian evolution.

The results of the distribution studies suggest that imprinted genes were not located on an ancestrally imprinted chromosome, nor were they associated with sex chromosomes. Rather it appears that imprinting evolved in a stepwise, adaptive way, with each gene or cluster becoming imprinted as the need arose.

The study is also important because despite its evolutionary importance, the platypus remains cytogenetically under-characterised. By linking specific sequences to particular chromosomes, the researchers have pinpointed important markers on the platypus genome.

Media Contact

Charlotte Webber EurekAlert!

More Information:

http://www.biomedcentral.com

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Microscopic basis of a new form of quantum magnetism

Not all magnets are the same. When we think of magnetism, we often think of magnets that stick to a refrigerator’s door. For these types of magnets, the electronic interactions…

An epigenome editing toolkit to dissect the mechanisms of gene regulation

A study from the Hackett group at EMBL Rome led to the development of a powerful epigenetic editing technology, which unlocks the ability to precisely program chromatin modifications. Understanding how…

NASA selects UF mission to better track the Earth’s water and ice

NASA has selected a team of University of Florida aerospace engineers to pursue a groundbreaking $12 million mission aimed at improving the way we track changes in Earth’s structures, such…

Partners & Sponsors