Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

3D Fruit Fly Images to Benefit Brain Research

05.09.2007
The fragile head and brain of a fly are not easy things to examine but MRC scientists have figured out how to make it a little simpler. And they hope their research will shed light on human disease.

Using an imaging technique, originally developed at the MRC Human Genetics Unit, called optical projection tomography (OPT) they have generated startling 3D images of the inside of a fruit fly for the first time. The OPT images could help to speed up genetic research into Alzheimer’s and other human diseases that affect brain cells.

Dr Mary O’Connell of the MRC Human Genetics Unit who led the research explained: ‘‘Neurodegeneration, the gradual loss of function of brain cells that occurs in Alzheimer’s, Parkinson’s and motor neurone diseases, isn’t a strictly human phenomenon. Insects are affected by it too. In the autumn, bees and wasps often develop erratic behaviour before they die.’’

Because the fruit fly (Drosophila melanogaster) and human share many genes with similar functions, the fly is widely used by genetic researchers to study how genes influence human disease.

... more about:
»OPT »O’Connell »brain cell »technique

‘‘It’s already known that defects in the equivalent fly genes involved in human brain diseases cause brain cells in fruit flies to lose function as they age,’’ Dr O’Connell continued.

OPT could help researchers to look at how the fly brain changes in response to alterations in the normal activity of a specific gene without the risk of damaging tissue through dissection.

In a paper published in the September 5 issue of the online, open-access journal PLoS ONE, the team describes how they have already used the technique to image individual cavities within the brain of an ageing fly and see the brain deteriorate.

MRC PhD student Leeanne McGurk who captured many of the OPT images explained why the technique works: ‘‘The dark colour of the fly exoskeleton prevents us from seeing inside it using a standard light microscope. In the past this has meant scientists have had to tease apart fruit fly tissues by hand – a laborious process. Now, we have got over the problem by bleaching the fly exoskeleton. When the fruit fly becomes colourless it is possible to use imaging techniques not only to view its internal organs but to generate 2D and 3D images of the entire fly. ’’

Using OPT images in this way will allow scientists to visualise where and how the products of selected genes are present in the fly. These patterns of gene expression, as they are known, will help to identify genes that control parts of the central nervous system and so provide detailed information about the human brain.

Bleaching of the exoskeleton to clear away the colour also allows images to be generated using other microscopic techniques that depend on penetration of light.

Dr O’Connell concluded: ‘‘This research is not simply limited to the study of conditions like Alzheimer’s but can also be used to study fly anatomy. The shape and size of organs can be affected by diseases like diabetes so imaging may yield clues to further our understanding of other conditions too.’’

Contact:
For further information or to arrange an interview with Dr Mary O’Connell contact the Medical Research Council press office
Tel: +44 (0) 20 7637 6011
Email: press.office@headoffice.mrc.ac.uk
Citation: McGurk L, Morrison H, Keegan LP, Sharpe J, O’Connell MA (2007) Three-Dimensional Imaging of Drosophila melanogaster. PLoS ONE 2(9):e834. doi:10.1371/journal.pone.0000834

Andrew Hyde | alfa
Further information:
http://www.plosone.org/doi/pone.0000834

Further reports about: OPT O’Connell brain cell technique

More articles from Life Sciences:

nachricht Seeing on the Quick: New Insights into Active Vision in the Brain
15.08.2018 | Eberhard Karls Universität Tübingen

nachricht New Approach to Treating Chronic Itch
15.08.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Unraveling the nature of 'whistlers' from space in the lab

15.08.2018 | Physics and Astronomy

Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide

15.08.2018 | Earth Sciences

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>