Limpets reveal possible fate of cold-blooded Antarctic animals

Compared to their temperate and tropical cousins, cold-blooded polar marine animals are incapable of fast growth. Until now scientists assumed that a lack of food in winter was the major limiting factor. Studies of the protein-making abilities of limpets in both the sea around the British Antarctic Survey’s (BAS) Rothera Research Station and in the laboratory aquarium reveal that these animals cannot make proteins – the building blocks of growth – efficiently.

Lead author Dr Keiron Fraser from BAS says, “This is an important step forward in our understanding of the complex biodiversity of Antarctica’s unique ecosystem. Sea temperature is predicted to increase by around 2°C in the next 100 years. If cold-blooded Antarctic animals can’t grow efficiently, or increase their growth rates, they are unlikely to be able to cope in warmer water, or compete with species that will inevitably move into the region as temperatures rise.”

Growth in animals occurs primarily by making and retaining proteins. While tropical water limpets typically retain 70% of the proteins they make, those in the Antarctic appear only to retain about 20%.

Media Contact

Linda Capper alfa

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Red light therapy for repairing spinal cord injury passes milestone

Patients with spinal cord injury (SCI) could benefit from a future treatment to repair nerve connections using red and near-infrared light. The method, invented by scientists at the University of…

Insect research is revolutionized by technology

New technologies can revolutionise insect research and environmental monitoring. By using DNA, images, sounds and flight patterns analysed by AI, it’s possible to gain new insights into the world of…

X-ray satellite XMM-newton sees ‘space clover’ in a new light

Astronomers have discovered enormous circular radio features of unknown origin around some galaxies. Now, new observations of one dubbed the Cloverleaf suggest it was created by clashing groups of galaxies….

Partners & Sponsors