Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research Says Sugar Coated Proteins Seal in a Memory of Diabetes

29.06.2007
Researchers at the University of Warwick’s Warwick Medical School have uncovered a process that locks the body’s metabolism in a diabetic state after only relatively limited exposure to high glucose levels.

Researchers were already aware that there seems to be a point of no return in the onset of diabetes. This was apparent in the Diabetes Complications and Control Trial (DCCT) in the 1990s when Type 1 diabetic patients were either placed on standard or intensive treatment regimens to normalize their glucose levels. Because complications were so profoundly reduced in patients with tight glucose control, all the remaining DCCT patients were switched early onto intensive therapy. However a follow-up study found that several years after switching to intensive therapy the patients who started the trial on only the standard treatment regimen continued to have more complications than those who received intensive therapy throughout the trial.

Research since has speculated that exposure to high glucose levels quickly creates a metabolic memory in which diabetes persists long after glucose levels have been corrected. Research to date suggested that oxidation played a role but the exact mechanism was unknown.

The Warwick research team, led by Dr Antonio Ceriello, have now proven that the damage seems to be done in a process called glycation when early on in a period of high glucose levels glucose sugar molecules are able to bind to proteins in the mitochondria of cells (the parts of cells governing the production and regulation of energy). This persists even if glucose levels later fall to normal. This inhibits and distorts the mitochondria’s normal function and results in an overabundance of the production of free radicals (or Reactive Oxygen Species – ROS) which cause oxidation and thus continued diabetic complications.

The Warwick Medical School researchers proved their hypothesis by taking tissue and exposing it to 2 weeks of high levels of glucose, followed by one week of normal glucose – however for half the tissue they also applied several antioxidants at the end of the two weeks of high glucose. The tissue without antioxidants levels of glucose stress remained high but where antioxidants had been applied there was a dramatic fall in the incidence of free radicals and there was also a significant drop in 5 of the 6 key markers for high glucose stress.

The Warwick Medical School research confirms the need for very early tight control of glucose levels to avoid diabetic complication and that that control must be supplemented with the use of antioxidant agents to mitigate the progression of complications.

However long term use of antioxidants can in itself produce health problems so in a further research published this month the Warwick Medical School team have tested the use of the AT-1 receptor blocker Telmisartan and found it can be used in exactly the same way to suppress the build up of free radicals without the side affects that long term use of antioxidants would cause.

Dr Ceriello is now beginning to look at how to move beyond simply suppressing the problematic production of free radicals and actually finding ways of reversing the glycation process itself thus erasing the harmful "metabolic memory".

Dr Ceriello’s paper "Reactive oxygen species mediate a cellular ‘memory’ of high glucose stress signaling" has just been published in Diabetologia DOI 10.1007/s00125-007-0684-2. The second paper, about to be published in Diabetes Care, is entitled "Antioxidants and Free Radicals, Endothelial Dysfunction, Oxidative and Nitrosative Stress covers his work on the AT-1 receptor blocker Telmisartan.

Peter Dunn | alfa
Further information:
http://www.warwick.ac.uk

Further reports about: Antioxidant free radicals glucose levels intensive radicals

More articles from Life Sciences:

nachricht Seeing on the Quick: New Insights into Active Vision in the Brain
15.08.2018 | Eberhard Karls Universität Tübingen

nachricht New Approach to Treating Chronic Itch
15.08.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Unraveling the nature of 'whistlers' from space in the lab

15.08.2018 | Physics and Astronomy

Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide

15.08.2018 | Earth Sciences

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>