Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dietary preferences and patterns may be linked to genes

11.06.2007
The relative amount of protein, carbohydrate, and fat that people choose to eat may be influenced by genetics, according to new research. Jose Ordovas, PhD, director of the Nutrition and Genomics Laboratory at the Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University (USDA HNRCA), and colleagues found that the apolipoprotein A-II gene (APOA2) is associated with proportions of fat, carbohydrate, and protein in the diet, along with total calories and, therefore, with body-mass-index (BMI).

These results, published in Clinical Chemistry, are the first to show that the APOA2 gene is linked to food preferences that shape dietary patterns, particularly preferences for dietary fat.

Ordovas, corresponding author, and colleagues analyzed genetic alleles, or variants, in the APOA2 promoter, a region that controls expression, or behavior, of the APOA2 gene. The alleles of the APOA2 promoter, T and C, form combinations; TT, TC, and CC, which indicate genotype. Of more than 1,000 study participants, approximately 85 percent had the common TT and TC genotypes, whereas 15 percent of participants had the CC genotype. “Both men and women with the CC genotype had a statistically significant higher intake of fat than people with the TT and TC genotypes,” says Ordovas. “People with the CC genotype also consumed an average of 200 more calories per day and were nearly two times more likely to be obese, as compared to those with the two more common alleles.”

In addition to preference for dietary fat, the researchers found evidence that the APOA2 gene influences preferences for protein and carbohydrate. People with the CC genotype consumed higher absolute amounts of protein and lower absolute amounts of carbohydrate than those with the TT and TC genotypes. “People with the CC genotype also exhibited dietary patterns with a lower amount of carbohydrate relative to fat and protein than people with the TT and TC genotypes,” says Ordovas, “despite their caloric intake or BMI.”

... more about:
»APOA2 »Dietary »HDL »HDL-cholesterol »Ordovas »allele

Study participants, who were part of the Genetics of Lipid Lowering Drugs and Diet Network (GOLDN) Study, funded by the National Institutes of Health, were asked to fill out dietary and lifestyle questionnaires. Researchers measured participants’ weight, height, and waist and hip circumference, along with blood lipid levels both before and after a high-fat meal.

The researchers did not find an association between any alleles of APOA2 and blood lipid levels, including triglycerides, total cholesterol, or LDL or HDL cholesterol. People with the CC genotype, however, did have greater amounts of small HDL cholesterol particles, as compared to larger HDL cholesterol particles, in their blood after eating the high-fat meal than did people with at least one T allele. Small HDL cholesterol particles are more of a risk factor for cardiovascular disease than are larger HDL particles.

“This study adds to our understanding of the relationship among nutrition, genetics, and obesity,” says Ordovas, who is also a professor at the Friedman School of Nutrition Science and Policy at Tufts. “Nutrients from the foods we eat activate proteins in our body, which in turn bind to promoter regions, like the APOA2 promoter. These promoters then tell our genes how to behave,” he explains. “Understanding these relationships may help to shape future recommendations for prevention of undesirable health outcomes, especially in populations that may be genetically vulnerable to certain dietary patterns or specific nutrients. More studies are needed in diverse populations to determine if APOA2 might play a role not only in food preferences, but also in satiety signaling.”

Siobhan Gallagher | EurekAlert!
Further information:
http://nutrition.tufts.edu/news/notes/2007-03.html
http://nutrition.tufts.edu/news/notes/2006-09.html

Further reports about: APOA2 Dietary HDL HDL-cholesterol Ordovas allele

More articles from Life Sciences:

nachricht New way to look at cell membranes could change the way we study disease
19.11.2018 | University of Oxford

nachricht Controlling organ growth with light
19.11.2018 | European Molecular Biology Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

New materials: Growing polymer pelts

19.11.2018 | Materials Sciences

Earthquake researchers finalists for supercomputing prize

19.11.2018 | Information Technology

Controlling organ growth with light

19.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>