Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Feeling a heartbeat via a computer

30.05.2007
The dynamics of a beating heart, the turbulence surrounding the fuselage of an airplane, or the field of forces inside a molecule. All of these things can be felt, not only seen, with a new visualization technology developed at Linköping University in Sweden.

Today's powerful computers have opened previously unimagined possibilities regarding the presentation and analysis of scientific data. Volume data, in particular-such as three-dimensional computer tomographies of the human body-can contain incredible amounts of information. When such data are to be analyzed, it can be an advantage to be able to use to more senses than sight alone.

Karljohan Lundin Palmerius at the Division for Visual Information Technology and Applications.

has developed methods to explore volume data using the sense of touch a branch of science that is often called haptics. He describes his pioneering work in a dissertation titled Direct Volume Haptics for Visualization.

... more about:
»Karljohan »Linköping »Lundin »Palmerius

Thanks to new computational algorithms, three-dimensional forms can be freely studied and perceived in a manner natural to the user, who works at a computer screen with a sort of touch tool. The most common type is constructed as an industrial robot in which miniature electric motors provide feedback to the hand.

"Different equations are needed for different applications. I am the first researcher to present the dynamic events of a beating heart in a real patient," says Karljohan Lundin Palmerius.

His Methods can be used to provide a better basis for diagnosis, but also for simulations for doctors to practice on a patient who will then be operated on in reality.

The medical data he works with come from the Center for Medical Image Science and Visualization (CMIV) at Linköping University. From SAAB he has been given access to data from the development of the unmanned airplane Shark and has created a virtual wind tunnel where the constructor can feel how the airstreams move around the fuselage.

Contact: Karljohan Lundin Palmerius, phone: +46-11 63326;
e-mail: Karljohan.Lundin.Palmerius@itn.liu.se
Åke Hjelm, pressofficer, Linköping univewrsity, ake.hjelm@liu.se;
+46-13 281395

Åke Hjelm | idw
Further information:
http://www.diva-portal.org/liu/abstract.xsql?dbid=8771

Further reports about: Karljohan Linköping Lundin Palmerius

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>