Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Soft tissue taken from Tyrannosaurus rex fossil yields original protein

13.04.2007
What happens when a 68 million-year-old Tyrannosaurus Rex meets 21st century medical science?

A North Carolina State University researcher and her colleagues at Harvard Medical School and Beth Israel Deaconess Medical Center found out when they confirmed the existence of protein in soft tissue recovered from the bone of a 68 million-year-old T. rex. Their results may both change the way that people think about fossil preservation and present a new method for studying diseases such as cancer.

Dr. Mary Schweitzer, assistant professor of paleontology at NC State with a joint appointment at the N.C. Museum of Natural Sciences, had previously discovered soft tissue in the leg bone of a T. rex recovered in 2003 from the Hell Creek formation in Montana.

After her own chemical and molecular analyses of the tissue indicated that original protein fragments might be preserved, she turned to colleagues Dr. John Asara, director of the mass spectrometry core facility at Beth Israel Deaconess Medical Center and instructor in pathology at Harvard Medical School and co-author Dr. Lewis Cantley, to see if they could provide the "nail in the coffin" that would confirm her suspicions. That nail would be sequence – the amino acid 'letters' used to make collagen, a fibrous protein found in bone.

... more about:
»Collagen »Fossil »Spectrometry »amino acid »dinosaur

Schweitzer's findings – and those of her colleagues – appear in the April 13 edition of the journal Science.

Bone is a composite material, consisting of both protein and mineral. When minerals are removed from modern bone, a collagen matrix – fibrous, resilient material that gives the bone its structure and flexibility – is left behind. When Schweitzer demineralized the T. rex bone, she was surprised to find such a matrix, because current theories of fossilization held that no original organic material could survive that long.

To see if the material had the characteristic cross-banded "stripes" that indicate collagen, Schweitzer and her colleagues examined the resultant soft tissue with both an electron microscope and atomic force microscopy. They then tested it against various antibodies that are known to react with collagen.

"We looked for collagen because it's plentiful, it's durable, and it has been recovered from other fossil materials, although none as old as this T. rex," Schweitzer says. "It's also a relatively easy molecule to identify, and it's not something that any microbes living in the immediate environment could produce. So identifying collagen in the soft tissue would indicate that it is original to the T. rex – that the tissue contains remnants of the molecules produced by the dinosaur, though highly altered."

But the evidence that Schweitzer had managed to find for the existence of collagen, while strongly suggestive, was not definitive. Fortunately, a mass spectrometry technique developed for studying low-level proteins in human diseases in Asara's mass spectrometry core facility was able to do what hadn't been possible before: provide the sequence of a 68 million-year-old protein and thus identify it.

Mass spectrometry measures the mass to charge ratio of individual molecules (peptides) that have been charged, identifying them by weight. Peptide fragmentation patterns reveal the amino acid sequence. The advantage of this method is that it extremely sensitive and can be used in cases where only very small amounts of material are available for analysis. That was definitely true of the T. rex sample, which only produced a miniscule amount of remnant protein, and the protein was in a mixture of other material that had remained after the extraction process.

Asara first applied the method to modern ostrich and then to 160,000- 600,000 year-old mastodon to demonstrate the efficiency and accuracy of their method while sequencing novel sequences unique to mastodon. Then he successfully sequenced the dinosaur protein, identifying the amino acids and confirming that the material from the T. rex was collagen. When the researchers compared the collagen sequences to a database that contains existing sequences from modern species, they found that the T. rex sequence had similarities to those of chicken, frog and newt.

"The similarity to chicken is definitely what we would expect given the relationship between modern birds and dinosaurs," Schweitzer says. "From a paleo standpoint, sequence data really is the nail in the coffin that confirms the preservation of these tissues. This data will help us learn more about dinosaurs' evolutionary relationships, about how preservation happens, and about how molecules degrade over time, which could also have some important medical implications for treating disease."

Tracey Peake | EurekAlert!
Further information:
http://www.ncsu.edu

Further reports about: Collagen Fossil Spectrometry amino acid dinosaur

More articles from Life Sciences:

nachricht Solving the efficiency of Gram-negative bacteria
22.03.2019 | Harvard University

nachricht Bacteria bide their time when antibiotics attack
22.03.2019 | Rice University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Solving the efficiency of Gram-negative bacteria

22.03.2019 | Life Sciences

Bacteria bide their time when antibiotics attack

22.03.2019 | Life Sciences

Open source software helps researchers extract key insights from huge sensor datasets

22.03.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>