Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Danish researches solve virus puzzle

02.04.2007
How is virus as for example HIV and bird flu able to make the cells within a human body work for the purpose of the virus? Researchers at the University of Copenhagen shed new light on this question.

The research is a collaboration between molecular biologists and physicists. ”The molecular biologists have knowledge of how the cell functions and of the interplay between the intercellular parts, while the physicists have the expertise and the technique to be able to measure and analyze the physical processes.” says Lene Oddershede, physicist at the Niels Bohr Institute, University of Copenhagen. This interdisciplinary work between physics and biology has been very fruitful and will be published April 3rd in the prestigious scientific journal PNAS, Proceedings of the National Academy of Sciences.

The researchers have investigated how a virus exploits the machinery of human cells to produce the proteins which the virus needs in order to replicate to billions of new vira. The virus penetrates into the host cell where it liberates its RNA which is a copy of the heritage material, DNA. RNA is like a 'cook book' which contains the recipes of which proteins the virus needs for replication.

The work process of a virus

... more about:
»RNA »physicist »pseudoknot »ribosome

The cell has ribosomes, a kind of 'molecular motors', which move along the RNA and read the code for the proteins to be produced to fulfill the needs of the living cell. The task of the ribosomes is to read the code of the host cell, but the virus has the special trick that its RNA resembles that of the host cell, and hence, the ribosomes of the host cell will start reading the viral RNA and produce the proteins requested by the virus. In order words, the virus can be viewed as a parasite, exploiting the human cell to live and replicate in.

Viral RNA resembles human RNA, but it has a tendency to curl up into 'pseudoknots', a three dimensional structure. When the ribosome walking along an RNA encounters a pseudoknot it needs to unravel the pseudoknot before it can proceed. Question is, how does it do that? Lene Oddershede at the Niels Bohr Institute, University of Copenhagen has developed optical tweezers which can investigate and manipulate molecules at the nano-meter scale. Using a tightly focussed laserbeam this instrument can grab the ends of the RNA tether and follow the process of how the pseudoknot is mechanically unfolded.

A crucial slip of the cellular motor

In their investigations the researchers use a pseudoknot which is related to bird flu. When the ribosome encounters a pseudoknot it has to unravel the knot before the reading can proceed. During this process the ribosome sometimes slips backwards and, like the letters making up a word, it now reads a new RNA sequence and hence uses another recipe to construct the protein. The researchers have found that the stronger the pseudoknot the more often this backwards slipping happens. The different protein formed is the protein needed by the virus, with possible serious consequences for the hosting organism. This is the manner in which many vira, e.g. HIV, trick the cell into producing something which it never would have done otherwise. Understanding the role of the pseudoknots can be an important step in developing a viral vaccine.

Gertie Skaarup | EurekAlert!
Further information:
http://www.nbi.dk

Further reports about: RNA physicist pseudoknot ribosome

More articles from Life Sciences:

nachricht During HIV infection, antibody can block B cells from fighting pathogens
14.08.2018 | NIH/National Institute of Allergy and Infectious Diseases

nachricht First study on physical properties of giant cancer cells may inform new treatments
14.08.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

'Building up' stretchable electronics to be as multipurpose as your smartphone

14.08.2018 | Information Technology

During HIV infection, antibody can block B cells from fighting pathogens

14.08.2018 | Life Sciences

First study on physical properties of giant cancer cells may inform new treatments

14.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>