Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bacteria in outer space exchange genes more often

23.02.2007
Studying of bacteria cosmic transformation is very important for space flight safety. It is necessary to know the methods to maintain cosmonauts’ immunity, what drugs should be offered to them, and what new biostable materials should be developed for spaceship compartments and equipment.

Researchers have investigated the peculiarities of microorganisms’ physiology and behavior in space on the “Mir” orbiting space station, and found that bacteria change significantly in extraterrestrial conditions. In 2005, experiments on board the “Photon 2” space vehicle launched batches of bacteria into space. Among them there were several cultures of bacilli, streptomycetes and Escherichia coli, selected not at random, but because they differ from each other in terms of their physiology, biochemistry and genetics, thus providing a more comprehensive view on bacteria behavior in general.

In orbit, living organisms face not only the lack of gravitation, but also cosmic radiation presence. Bacteria in space become more aggressive, and can “eat” spaceship components. This happens because microorganisms start producing enzymes unusual for them in terrestrial conditions, which destroy structural materials. It is not improbable that bacteria become aggressive not only towards materials but also provoking unexpected diseases in humans. Cosmonauts already experience immunodeficiency problems in flight, which makes them more vulnerable.

Observations on board the “Mir” and “Photon 2” proved that microorganisms change even during short-term flights of 12-14 days. For example, streptomycetes changed their appearance (size, shape and outline of the colonies’ surface). The in-depth analysis also revealed genetic modifications of microorganisms. The number of their mutations does not increase, but some genes are disrupted. Some genes that are “dormant” on the Earth, begin to work, which generate the enzymes which damage structural materials.

... more about:
»Change »genes »materials

Fortunately, when bacteria return to the Earth, they lose their aggressiveness, with changes that took place in orbit are reversible. Otherwise, similar problems could be expected on the Earth: destruction of materials and diseases in humans.

Nadezda Markina | alfa
Further information:
http://www.informnauka.ru

Further reports about: Change genes materials

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>