Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NYU, Scripps finding offers new path for treatment of diabetes

28.11.2006
Researchers at New York University and the Scripps Research Institute have discovered a new enzyme, GAPDH, which regulates insulin pathways—a finding that offers a new direction for the treatment of diabetes. The research is reported in the most recent issue of the journal Nature Chemical Biology.

The enzyme GAPDH was previously unknown to be a factor in the development of diabetes in humans. It has also been discovered that the inhibition of GAPDH attenuates the diabetic disease symptom in model animals.

The research team, which included NYU’s Departments of Biology and Chemistry and Scripps’ Department of Cell Biology, used the worm Caenorhabditis elegans (C. elegans) to identify a new therapeutic target protein for diabetic treatment. C. elegans is the first animal species where RNA interference (RNAi) is discovered and thus, an excellent model organism for chemical genetic research. In this study, the researchers screened hundreds of chemical compounds to find one hit compound, which rescues the mutant C. elegans (diabetics model) from diabetes. Then, they identified the target protein, which was found to be the enzyme GAPDH. GAPDH has long been known as one of the important glycolytic enzymes, and its function is affected by insulin. However, this is the first discovery that GAPDH actively regulates the insulin pathway.

The research team constructed all the molecules by incorporating the fishing tag (linker) from the beginning, and facilitated the target fishing. The hit compound was named GAPDS (GAPDH segregator) as GAPDS disassemble the multi-part structure of GAPDH into monomers. The segregation of GAPDH releases the suppressor of insulin signaling from the cell membrane, and thus activates the insulin signaling to eventually help to treat diabetes.

... more about:
»Diabetes »GAPDH »Insulin »compound »elegans »enzyme

While the C-elegans is a recommended model for chemical genetic study, treating them with chemical compounds presented difficulties for the researchers because they grow on the surface of agar. To overcome these challenges, the researchers devised a soaking method in which the worms were placed in a compound solution for 24 hours. By this method, the worms were exposed to equitable concentration of the compounds. The mutant C-elegans are in a growth arrested status. By addition of compounds, a re-growing of the worms into normal size was observed by GAPDS, which is analogous to treating diabetes patients with a drug.

While there are many drugs on the market to treat diabetes, the number of known disease-producing protein targets is small. Because diabetes has many causes, targeting several different proteins offers the most promising method for treatment. The discovery of GAPDH adds another target that can be addressed in combating the disease.

James Devitt | EurekAlert!
Further information:
http://www.nyu.edu

Further reports about: Diabetes GAPDH Insulin compound elegans enzyme

More articles from Life Sciences:

nachricht Bioenergy cropland expansion could be as bad for biodiversity as climate change
11.12.2018 | Senckenberg Forschungsinstitut und Naturmuseen

nachricht How glial cells develop in the brain from neural precursor cells
11.12.2018 | Universitätsmedizin der Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

Electronic evidence of non-Fermi liquid behaviors in an iron-based superconductor

11.12.2018 | Physics and Astronomy

Topological material switched off and on for the first time

11.12.2018 | Materials Sciences

NIST's antenna evaluation method could help boost 5G network capacity and cut costs

11.12.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>