Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New cancer-fighting virus kills invasive brain cells

02.11.2006
Best results when VSV injected intravenously

Researchers funded by The Terry Fox Foundation and the Canadian Cancer Society have found that a cancer-fighting virus called VSV kills the most malignant form of brain cancer in mice.

The team also discovered that the virus can be given intravenously and targets invasive tumour cells.

The research team first modified the virus by altering one of the genes to make it safer in normal cells but still able to kill cancer cells. They then used a new way of delivering the virus – intravenously instead of directly into the tumour – and were able to target the main tumour as well as the tumour cells that had spread from the main mass.

The study was led by Dr. Peter Forsyth, a medical oncologist with the Alberta Cancer Board and a professor of oncology, neurosciences, biochemistry and molecular biology at the University of Calgary. The study is published in the Nov. 1 issue of the Journal of the National Cancer Institute.

The brain tumour cells that invade into the surrounding normal brain are usually "hidden" from current treatments and are the ones that usually lead to a disease recurrence. The research using the vesicular stomatitis virus (VSV) was conducted on mice as well as on tumour specimens from patients with an aggressive form of brain cancer called malignant glioma.

"These findings are an excellent example of the great value of scientific collaboration," says Darrell Fox, national director of The Terry Fox Foundation. "Dr. Forsyth is part of a pioneering group of researchers that are sharing their expertise and benefiting from the knowledge of others working in this exciting new area of anti-cancer treatment."

"Research into viruses that target cancer is a promising new avenue in the fight against this disease," says Dr. Barbara Whylie, CEO of the Canadian Cancer Society. "We look forward to the possibility of this research leading to more effective treatments for this devastating disease."

Despite dramatic advances in the treatment of malignant glioma, one of the most common types of nervous system cancers in adults, the prognosis of patients has not improved substantially in the past 30 years. While there is typically initial success in treatment, the cancer cells usually spread beyond the main tumour and the disease recurs in another part of the body. When this happens, the disease often becomes resistant to standard chemotherapy treatment.

"An ideal cancer-fighting virus should have effective delivery into multiple sites within the tumour, evade the body's immune responses, reproduce rapidly, spread within the tumour and infect cells that have spread. In this study, that's exactly what we found that VSV has done when injected intravenously," says Dr. Forsyth.

The researchers tested VSV on 14 cell lines of malignant glioma and found that the virus infected and killed all cell lines. The normal cell lines – those that did not contain malignant glioma cells – were not affected.

"One of the limitations to the use of these viruses in patients is the difficultly in getting a sufficient amount of virus to the cancer," says Dr. Forsyth. "While these are very early results, we are very encouraged to find that delivering VSV intravenously attacks the cancer cells and not normal cells. From a patient's point of view, it is obviously a lot easier to be treated with a few intravenous treatments rather than having several surgeries to inject the treatment directly into your brain."

In 2006, an estimated 2,500 Canadians will be diagnosed with brain cancer and 1,670 will die of it. Even with the best available treatments – usually surgery and chemotherapy or radiation – patients with malignant glioma survive, on average, just one year.

Nancy Rose | EurekAlert!
Further information:
http://www.cancer.ca
http://www.cancerboard.ab.ca

Further reports about: Cancer Forsyth VSV cancer-fighting glioma intravenously malignant tumour

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>