Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stretching bone marrow stem cells pushes them towards becoming blood vessel

26.10.2006
When stretched, a type of adult stem cell taken from bone marrow can be nudged towards becoming the type of tissue found in blood vessels, according to a new study by bioengineers at the University of California, Berkeley.

Researchers placed mesenchymal stem cells onto a silicone membrane that was stretched longitudinally once every second. It was a cellular workout routine that helped point the bone marrow stem cell in the direction of becoming the smooth muscle tissue of vascular walls.

The findings, published today (Monday, Oct. 23) in the online early edition of the Proceedings of the National Academy of Sciences, highlight the importance of mechanical forces in stem cell differentiation.

Mesenchymal stem cells have the ability to turn into different types of connective tissue including bone, cartilage and muscle. Embryonic stem cells have the advantage of being able to turn into any kind of body tissue and of being easier to work with in the lab, though that flexibility comes with controversy and ethical questions not found in research on adult stem cells.

But research on both types of stem cells holds the promise of treatment for diseased or damaged body parts. Experiments in stem cell differentiation, however, have traditionally relied upon chemical signals to prompt this transformation into the desired cell type.

Song Li, UC Berkeley associate professor of bioengineering and principal investigator of the study, heads one of the leading research groups in the country investigating the role of a stem cell's physical environment on its development.

"The mechanical effects on the body are well known. A good example is when astronauts in space experience a loss of bone mass because there is no gravity," said Li. "We are now extending this concept to the cellular level by showing that mechanical stimulation can impact stem cell differentiation."

In an effort to better understand the factors that affect the eventual fate of mesenchymal stem cells, the researchers designed the experiment to simulate the physical forces a cell would encounter if it were to become a blood vessel.

Kyle Kurpinski, a UC Berkeley graduate student in bioengineering and lead author of the study, noted that in previous studies on the effects of mechanical strain, cells were stretched in all directions. However, he pointed out that cells in the walls of a blood vessel are pulled in a circumferential direction, or sideways if the vessel walls are laid flat. This new study is the first to look at the effects of such uniaxial strain on stem cell differentiation.

A one-stretch-a-second pace was chosen to correspond to a typical adult pulse rate, said Kurpinski. The researchers placed a single layer of mesenchymal stem cells onto a membrane with microgrooves to resemble the patterns formed in blood vessels by collagen fibers.

The microgrooves were aligned either perpendicular or parallel to the axis of strain, and some of the cells were stretched while others were not. The researchers also looked at the effects of stretching stem cells on a smooth membrane with no microgrooves.

"It is hypothesized that cells aligned in the microgrooves actually feel the strain of the pull more than if they were on a smooth surface," said Kurpinski.

After two days of this cellular exercise regimen, the researchers found a significant increase in the expression of a group of genes that control tensile strength compared with cells that were not stretched. Tensile strength is important for tissue that must withstand pulling forces, such as in vascular walls. Specifically, there was an increased level of calponin 1, a genetic marker for smooth muscles.

At the same time, expression of a group of genes associated with compression-bearing tissue, such as cartilage and bone, decreased. "For cartilage and bone, particularly at the joints, cells experience compression forces," said Li. "Stem cells seem to know the type of tissue they are supposed to become by the type of mechanical strain they are subjected to."

As for cell positioning, the researchers found that without the microgrooves, the stem cells would align themselves perpendicularly to the direction of the stretch. In contrast, when stretched on a membrane with microgrooves parallel to the axis of strain, the stem cells aligned themselves along the grooves.

They found that the perpendicular orientation significantly diminished the expression of genes for tensile strength. Researchers also saw a slight increase in cell proliferation when cells were aligned parallel to the axis of strain.

The findings indicate that the stem cells were well on their way to becoming smooth muscle tissue, although they didn't quite get there.

"The potential is there," said Li. "We are halfway done. To completely achieve the efficient guidance of cell differentiation in a lab, we will likely need a combination of chemical and mechanical factors."

"We're definitely a major step closer to developing a process of tissue engineering that could one day have clinical applications," added Kurpinski.

Sarah Yang | EurekAlert!
Further information:
http://www.berkeley.edu

Further reports about: Kurpinski Membrane aligned blood vessel marrow mechanical microgrooves stem cells vessel

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

Computer model predicts how fracturing metallic glass releases energy at the atomic level

20.07.2018 | Physics and Astronomy

Relax, just break it

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>