Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetic parallels found between lung development and lung cancer

05.07.2006
Gene activity patterns provide a new way to classify tumors

For over 100 years, biologists have speculated that cancer growth shares common features with embryonic development. Researchers at Children's Hospital Boston now provide solid evidence for this idea, showing through gene-chip analyses and bioinformatics techniques that many genes that are differentially expressed (turned "up" or "down") during early embryonic lung development are also differentially expressed in lung cancer.


Genes whose activity is increased in adenocarcinoma (green circles) tend to be active early in lung development, while genes with reduced activity (magenta) tend to be active late in development.

More importantly, they show that gene-expression profiling can predict a lung cancer's prognosis, and that cancers whose gene expression pattern resembles gene expression during the earliest stages of lung development have the worst prognosis of all.

"This confirms our earlier finding of the importance of normal organ development in understanding cancer," says Isaac Kohane, MD, PhD, director of the CHIP program and a co-author on the paper. "Our observations might translate into more accurate prognoses and help us identify mechanisms of cancer growth that can be therapeutically targeted."

Lung cancer, the world's leading cause of cancer deaths, has many known subtypes, but it is commonly misclassified, delaying appropriate treatment. In addition, cancers within a subtype may vary in their aggressiveness.

Seeking a better way to classify lung cancers, Hongye Liu, PhD, and colleagues in the Children's Hospital Informatics Program (CHIP) examined gene activity in tumors from 186 patients and compared it with the gene activity that occurs during normal embryonic lung development in mice. They also examined 17 samples of normal lung tissue. Starting with 3,500 genes known to be common to mice and humans, they identified 596 genes whose activity was altered both in lung tumors and during lung development.

Using the natural trajectory of lung development as a framework, Liu and colleagues were able to predict survival in patients with adenocarcinoma (the most common type of lung cancer, and the only type for which they had survival data). Tumors with gene expression patterns most like those during very early lung development had the worst prognosis, while tumors with gene expression patterns resembling those seen late in lung development had the best prognosis. Even within a single adenocarcinoma subtype – stage I disease – survival times varied according to gene expression patterns. Gene expression patterns in normal lung tissue resembled those seen in late in lung development.

"Before, the idea that cancer and organ development are related was not quantified or statistically significantly demonstrated," says Liu. "The development perspective gives us a new mechanism for understanding cancer."

The researchers also found that one lung cancer subtype, carcinoid tumors, have a gene expression profile distinct from all the others. When biopsy specimens are examined, carcinoid looks very similar to small-cell lung cancer, and the two are often mistaken for each other, yet their life expectancy and optimal treatments are very different. "By molecular profiling, we can distinguish these two cancers," Liu says.

In addition, focusing on the 100 genes with the greatest cancer/development correlation, Liu and colleagues found three groups of genes that are involved in biological pathways believed to be key in lung cancer development, and some of the genes showed potential as drug targets. Several genes had stem-cell-like characteristics.

Liu's work builds on a 2004 study, in which Kohane and Alvin Kho, PhD (another co-investigator on Liu's study) showed that a pediatric brain tumor called medulloblastoma shares many common genetic features with the cerebellum in its earliest stages of development (www.childrenshospital.org/newsroom/Site1339/mainpageS1339P1sublevel81.html).

James Newton | EurekAlert!
Further information:
http://www.harvard.edu

More articles from Life Sciences:

nachricht Nonstop Tranport of Cargo in Nanomachines
20.11.2018 | Max-Planck-Institut für molekulare Zellbiologie und Genetik

nachricht Researchers find social cultures in chimpanzees
20.11.2018 | Universität Leipzig

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nonstop Tranport of Cargo in Nanomachines

Max Planck researchers revel the nano-structure of molecular trains and the reason for smooth transport in cellular antennas.

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

Nonstop Tranport of Cargo in Nanomachines

20.11.2018 | Life Sciences

Researchers find social cultures in chimpanzees

20.11.2018 | Life Sciences

When AI and optoelectronics meet: Researchers take control of light properties

20.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>