Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NYU researchers decorate virus particles, showing potential to enhance MRI capabilities

14.06.2006
Researchers at New York University have made chemical modifications to nanometer sized virus particles--a process that has the potential to improve magnetic resonance imaging (MRI) techniques. Their results are reported in the latest issue of Nano Letters.

The study was conducted jointly by NYU's Department of Chemistry and the Department of Radiology at the NYU School of Medicine. The study is part of a collaborative discussion group between these departments called Molecular Imaging and Contrast Agents (MICA). Contrast agents are chemical compounds that enhance the ability of medical imaging techniques, such as MRI, to discriminate between different tissue types. MICA includes Chemistry Professor James Canary, radiologist Dr. Edwin Wang, and assistant chemistry professor Kent Kirshenbaum. Assistance for the study was provided by the University of New Mexico's Department of Molecular Genetics and Microbiology at its Health Sciences Center.

The protein coats of viruses provide an attractive platform for tailoring the physical properties and functions of molecular assemblies because they contain a large number of chemically reactive groups organized in a very precise array. Other researchers have recently sought to enhance MRI capabilities through the use of similar large molecular assemblies by increasing the size, and therefore signal, of MRI contrast agents. They have also tried to use this terrain to facilitate "multi-modality," in which a set of imaging probes, such as those for both MR and optical imaging, are integrated.

The NYU researchers were able to show the attachment of a large number of gadolinium chelates--the chemical compound used in MRI contrast agents --on the surface of the viral particles. This resulted in the generation of a very intense signal when Wang imaged their samples in a clinical MRI scanner.

"Our work validates some hypotheses in the field of Magnetic Resonance Imaging contrast agents," explained Kirshenbaum, the study's corresponding author. "Previous studies have predicted that as you increase the particle size of an MR contrast agent, you should see it become more effective--as the particle takes longer to tumble in solution, it should become more capable of influencing the response of neighboring water molecules. Our study provides evidence that this effect works. Since the signal that radiologists observe in MRI scans is generated primarily from water molecules within the body, we potentially have the ability to get better contrast and clearer images that can distinguish between different tissue types."

While Kirshenbaum cautioned that many obstacles remain in using this process to enhance MRI for clinical applications, he said the results point to the potential of enhancing specific MRI capabilities.

"If a radiologist wants to design a versatile probe that can be used in a variety of different imaging protocols, a chemically modified virus particle now appears to be an attractive option for this type of sophisticated application," he noted. "For example, if we can decorate the particles so that they are recognized by specific receptors on cell surfaces, we may be able to use MRI to image tumors much smaller than can currently be seen."

James Devitt | EurekAlert!
Further information:
http://www.nyu.edu

More articles from Life Sciences:

nachricht Good preparation is half the digestion
15.11.2018 | Max-Planck-Institut für Stoffwechselforschung

nachricht How the gut ‘talks’ to brown fat
16.11.2018 | Technische Universität München

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Massive impact crater from a kilometer-wide iron meteorite discovered in Greenland

15.11.2018 | Earth Sciences

When electric fields make spins swirl

15.11.2018 | Physics and Astronomy

Discovery of a cool super-Earth

15.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>