Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Same species responds differently to same warming, depending on location

06.06.2006
Pre-cooked mussels?

Based on current trends for both air and water temperatures, by 2100 the body temperatures of California mussels -- found along thousands of miles of coast in the northeast Pacific Ocean and not just in California –- could increase between about 2 degrees F and 6.5 F depending on where they live.


A "robomussel," actually an intertidal temperature data logger, can mimic the thermal characteristics of an individual mussel and record temperature data at 10-minute intervals for up to seven months. Credit: University of Washington

For areas where mussels already are living close to the edge, chances are that increases of 6.5 F will kill them, researchers say.

Unlike humans, the body temperature of marine animals such as mussels is regulated by the temperature of the air and water around them –- and it’s not the simple 1-degree warmer and 1-degree rise in body temperature that has been assumed, says Sarah Gilman, a University of Washington postdoctoral researcher and lead author of a paper appearing online June 5 through June 9 in the Early Edition of the Proceedings of the National Academy of Sciences.

For the first time, Gilman and her co-authors show that even if the weather warms the air and water the same amounts in one area as another, the actual effect on mussel body temperatures can vary because of local climate. For example, in Washington, air temperature appears to be more important in driving mussel temperature while in southern California, water temperature is the more important factor.

"This is an important consideration for conservation biologists trying to understand how a species might handle global warming and to those proposing reserves in marine environments," Gilman says. "Protected areas will need to be in places where marine animals can live in the face of climate change."

In work funded by the National Science Foundation, NASA and the National Oceanic and Atmospheric Administration, data loggers –- tiny computers with thermometers -– have been used to collect information in mussel beds. The data loggers, nicknamed "robomussels," record the temperatures being experienced by the surrounding mussels every 10 minutes for months at a time.

A new computer model described in the paper relates the collected data to meterological information researched by Gilman. Using the model and applying a moderate air temperature warming of 2.25 F across the California mussels’ range resulted in mussel body temperature increases ranging from just under 2 F to just over 2 F depending on the habitat. Modeling a more extreme air warming of 7.5 F by 2100 across the mussels’ geographic range resulted in body temperature increases ranging from about 4 F to 6.5 F. "We have only contributed ’step one,’ the tie between climate and body temperature," says co-author Brian Helmuth, associate professor of biological sciences at the University of South Carolina. "With our model we can predict temperatures based on satellites and computer models of climate change. The next step is to work with physiologists to see just what body temperatures California mussels can handle.

"Unfortunately, from what we can tell so far, California mussels are likely already pretty close to the edge, at least at some places along the West Coast. Our study suggests that climate change may start to kill marine animals in some unanticipated places. However, we can use modern technologies such as remote sensing to forecast some of these impacts."

Intertidal habitats, places uncovered at low tide and flooded with water at high tide, have long served as models for investigating the effects of climate on species distribution and monitoring the consequences of climate change for natural ecosystems, write Gilman, Helmuth and another co-author David Wethey, professor of biological sciences at South Carolina. In the course of some low tides, intertidal organisms such as California mussels –- or Mytilus californianus -– may already experience temperatures near the maximum they can tolerate, so they are thought to be a good organism to watch for responses to climate change.

"The bottom line is, as humans, we tend to have this very biased view of the world and we forget that changes in air temperature, which tend to have only very small direct effect on us, can have huge effects on other species," Helmuth says. "This is especially true for species that have temperatures driven by the sun, wind and air temperature, much as the way your car heats up on a sunny day."

Sandra Hines | EurekAlert!
Further information:
http://www.washington.edu

More articles from Life Sciences:

nachricht Progress in Super-Resolution Microscopy
17.12.2018 | Julius-Maximilians-Universität Würzburg

nachricht Communication between neural networks
17.12.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data storage using individual molecules

Researchers from the University of Basel have reported a new method that allows the physical state of just a few atoms or molecules within a network to be controlled. It is based on the spontaneous self-organization of molecules into extensive networks with pores about one nanometer in size. In the journal ‘small’, the physicists reported on their investigations, which could be of particular importance for the development of new storage devices.

Around the world, researchers are attempting to shrink data storage devices to achieve as large a storage capacity in as small a space as possible. In almost...

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

When a fish becomes fluid

17.12.2018 | Studies and Analyses

Progress in Super-Resolution Microscopy

17.12.2018 | Life Sciences

How electric heating could save CO2 emissions

17.12.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>