Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein’s potential as a regulator of brain activity discovered

21.04.2006
UCI study points to new therapeutic possibilities for epilepsy and neurodegenerative diseases

UC Irvine researchers have found that a protein best known for building connections between nerve cells and muscle also plays a role in controlling brain cell activity. The finding points to possible therapeutic applications in the development of new drugs for treatment of epilepsy and neurodegenerative disorders.

Martin Smith, professor of anatomy and neurobiology in the School of Medicine, and his UCI colleagues discovered that agrin -- a protein that directs synapse formation between nerve and muscle cells -- can also inhibit the function of "pumps" that control sodium and potassium levels within cells.

These pumps, called sodium-potassium ATPases -- or sodium pumps, for short -- are especially important in electrically excitable cells, where they provide the basis for electrical impulses, known as action potentials, which are responsible for muscle contraction and signaling between nerve cells in the brain. They do this by pumping sodium out of a cell and pumping potassium in, setting up an electrochemical gradient -- in a sense, turning the cell into a battery.

If this activity isn’t properly moderated, uncontrollable electrical impulses can be triggered, which is one of the cellular mechanisms behind an epileptic seizure, for instance.

This is where agrin comes into action. The UCI researchers observed in laboratory tests that agrin controls the excitability of nerve cells in the brain by regulating sodium pump activity. Adding agrin caused nerve cells to fire electrical impulses uncontrollably. In turn, the researchers found that they could block these electrical impulses by introducing small fragments of agrin, which prevented the full agrin proteins from binding their sites on the sodium pump molecules and initiating action potentials.

"The ability of agrin to modulate nerve cell excitability suggests that the agrin-sodium pump interactions can be exploited as a novel therapeutic target for epilepsy and other brain disorders," Smith said.

Agrin proteins are also expressed in heart tissue, and Smith notes that sodium pump inhibitors, such as digoxin, are commonly used to treat congestive heart failure. Agrin may, therefore, have therapeutic value for the treatment of diseases affecting tissues and organs outside of the brain.

Tom Vasich | EurekAlert!
Further information:
http://www.uci.edu
http://www.today.uci.edu

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Epoxy compound gets a graphene bump

14.11.2018 | Materials Sciences

Microgel powder fights infection and helps wounds heal

14.11.2018 | Health and Medicine

How algae and carbon fibers could sustainably reduce the athmospheric carbon dioxide concentration

14.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>