Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecular imaging may lead to earlier diagnosis of childhood respiratory virus

20.04.2006
Scientists have used a powerful molecular imaging technique to see inside living cells infected with the most pervasive and potentially fatal childhood respiratory virus known to medicine -- respiratory syncytial virus (RSV).

The technique is yielding insight on viruses – such as RSV, human influenza, hepatitis C, West Nile virus and severe acute respiratory syndrome (SARS) -- that replicate with the help of proteins encoded by ribonucleic acid (RNA) inside the cell. Ultimately, the research could to lead to early and rapid detection of viral infection and the design of new antiviral drugs.


An epi-fluorescence microscopy image shows human RSV viral RNA in aggregates, called inclusion bodies, and in filament form, growing in green monkey kidney cells, using molecular-scale probes called molecular beacons molecular beacons. Credit: Image Courtesy of Phil Santangelo


Confocal microscopy images reveal the three-dimensional structure of bovine RSV viral RNA in living, infected bovine nasal cells using molecular-scale probes called molecular beacons. Credit: Image Courtesy of Phil Santangelo

Scientists and engineers at the Georgia Institute of Technology and the University of Georgia are studying bovine and human RSV with molecular-scale probes – called molecular beacons – that are engineered oligonucleotides (short sequences of RNA or DNA) shaped like a hairpin with a fluorescent dye molecule on one end and a quencher molecule on the other end. They are designed to fluoresce only when they bind to a complementary target – in this case, RSV genomic RNA.

"For the first time, we were able to visualize an important part of the RSV virus -- its genome -- in live, infected cells," said Phil Santangelo, a research engineer in the Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University. "Our molecular beacons attach to the virus and glow inside infected cells as the virus grows, replicates and infects other cells. We can now see that happen in real time in cultures in the lab.

"That’s very different from how scientists have studied viruses in past; they’ve looked at viruses in fixed (or preserved) cells," he added. "…. Within the first week of studying human RSV in living cells, I learned something new because I was looking at it live."

Molecular beacons were originally developed at the Public Health Research Institute in New Jersey in the late 1990s. They were initially used for in vitro assays outside cells. But Santangelo and former Georgia Tech Ph.D. student Nitin Nitin, now a postdoctoral researcher at Rice University, devised methods for getting the beacons inside the cell without destroying the probe and without changing the cells.

Santangelo will give an invited presentation on his research on April 20 at the Materials Research Society meeting in San Francisco. The research is funded under a National Institutes of Health grant to Professors Shuming Nie and Gang Bao – both in the Department of Biomedical Engineering at Georgia Tech and Emory -- to develop new, high-sensitivity live-cell probes. In this study, Santangelo, who works for Bao, collaborated with Amelia Woolums, an associate professor of large animal medicine at UGA.

They determined their molecular beacon techniques deliver high-sensitivity and high-specificity results in both bovine and human RSV strains. "The RSV genome is interesting in that it is 15,000 nucleotides long, and one of its RNA sequences repeats itself nine times," Santangelo explained. "So we were able to bind up to nine probes to that sequence, and that helped us achieve very high sensitivity to the virus. In the human virus, in fact, we were able to see a single RSV virion."

Also, researchers were able to detect virion aggregates in bovine RSV within the first day in culture, Santangelo noted. Typically, veterinarians cannot detect RSV until after five or six days of incubation.

Bovine RSV can be a major problem in cows, which represent a good animal model for human RSV. Calves have RSV symptoms similar to those in human babies, and the disease pathology is similar. So studying bovine RSV yields information about the strain that infects humans, he added. Also in this study, researchers used confocal microscopy to view very thin sections of the RSV viral genome in live, infected cells. This technique allowed them to reconstruct the viral RNA aggregates in three dimensions.

"Most pathologists look at thick sections of RSV in formaldehyde, but our 3D structures are more fluid and amorphous than the solid structures pathologists have observed," Santangelo said. "The more we know about how RSV really looks, the more we’ll understand about its pathogenesis."

RSV is the most important cause of respiratory infection in young children worldwide, infecting virtually every child in the first few years of life. Immunity is feeble and fleeting, and repeated infections are the rule. One in every 100 or 200 infected infants requires hospitalization, usually for bronchiolitis. There is not yet an effective vaccine for RSV, and current anti-viral drugs are in their infancy in terms of efficacy, Santangelo noted.

Ultimately, researchers want to conduct in vivo testing, but must first adapt their molecular beacons technology for that purpose, Santangelo said. "In the nearer term, we hope to use molecular beacons to detect RSV in clinical samples like with those taken with a nasal swab. We might be able to detect RSV in its first day of incubation and make an early diagnosis,’’ he added.

The researchers also hope their research will lead to development of a suite of anti-viral drugs for treating RSV and other viruses, including human influenza.

Jane Sanders | EurekAlert!
Further information:
http://www.gatech.edu

More articles from Life Sciences:

nachricht Researchers target protein that protects bacteria's DNA 'recipes'
21.08.2018 | University of Rochester

nachricht Protein interaction helps Yersinia cause disease
21.08.2018 | Schwedischer Forschungsrat - The Swedish Research Council

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Air pollution leads to cardiovascular diseases

21.08.2018 | Ecology, The Environment and Conservation

Researchers target protein that protects bacteria's DNA 'recipes'

21.08.2018 | Life Sciences

A paper battery powered by bacteria

21.08.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>