Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Starvation response in worms points to common hunger pathway

05.04.2006
New evidence in the April 5, 2006 Cell Metabolism reveals a molecular mechanism that may play a general role in animals’ ability to respond appropriately when starved. The researchers discovered a pathway in worms that underlies their ability to adapt to food scarcity by remodeling their primary feeding organ.

In combination with earlier evidence, the findings suggest the so-called muscarinic acetylcholine pathway might play a conserved role in animals’ starvation response, the researchers said. The new findings might ultimately yield insights into the connection between eating disorders and an abnormal response to hunger or starvation, they suggest.

"In the nematode worm C. elegans, starvation causes a variety of changes in development, longevity, and behavior," said Young-jai You of the University of Texas Southwestern Medical Center. One such behavioral change involves alterations to the animals’ main feeding organ, the pharynx.

The worms eat by "pumping" bacteria in via relaxation and contraction of their pharyngeal muscle--an activity controlled by their internal feeding status. However, the signal responsible for changes in pumping rate had yet to be found.

The research team now reports that starvation activates the enzyme MAPK in the pharyngeal muscles of C. elegans through a muscarinic acetylcholine receptor. Mutations and drugs that prevented any step of the signal from muscarinic receptor to MAPK blocked the effects of starvation on the feeding muscle, they found. Furthermore, an excess of MAPK in normal worms mimicked the effect of starvation on the muscle.

"In mammals, muscarinic acetylcholine receptors regulate heart muscle and smooth muscle of the [digestive] tract, and MAPK signaling activation downstream of muscarinic acetylcholine receptors has been widely noted," wrote Kaveh Ashrafi in a Preview. "Moreover, there are intriguing but conflicting reports on the role of the receptors in growth rate and body weight of rodents.

"It is therefore plausible that molecular mechanisms that mediate starvation responses of C. elegans pharyngeal muscle are conserved across phylogeny," Ashrafi said.

The findings might help to unravel the factors underlying eating disorders, the researchers said.

"Despite the prevalence of feeding disorders from obesity to anorexia, the identity and mechanism of action of starvation signals are largely unknown," You’s team added. "Our study of starvation sensitivity of gpb-2 mutants and the downstream signaling pathway in feeding muscles suggests that feeding disorders may result from inappropriate behavioral responses to starvation signals."

Heidi Hardman | EurekAlert!
Further information:
http://www.cellmetabolism.org

More articles from Life Sciences:

nachricht Lethal combination: Drug cocktail turns off the juice to cancer cells
12.12.2018 | Universität Basel

nachricht Smelling the forest – not the trees
12.12.2018 | Universität Konstanz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

How skin cells protect themselves against stress

12.12.2018 | Life Sciences

Copper compound as promising quantum computing unit

12.12.2018 | Life Sciences

New approach towards an improved treatment of anxiety disorders

12.12.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>