Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Counting Cells That Ensure Gene Balance

02.02.2006


Two are one too many – this is the motto used by cells of a female organism: These contain two X chromosomes, one of which always becomes inactivated. How does the cell recognize that it contains two of these sex chromosomes and how does it choose which one to turn off? Scientists of the German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ), working together with French colleagues, have now been able to elucidate an early step in this complex process.



Forty-five years ago, British scientist Mary Lyon already described this chromosome inactivation typical of female cells. Lyon proposed a hypothesis: With two copies of the X chromosome, all X-linked genes are present in two copies. However, in a male organism, which is equipped with a set of one X and one Y chromosome, the X genes are present in only one copy in each cell. To restore genetic balance, a female cell inactivates one of its two X chromosomes.

During development of a female embryo, inactivation of either of the X chromosomes, the one inherited from the father or the one inherited from the mother, occurs at random. To coordinate inactivation, the cell first needs to determine whether it contains more than one X chromosome and then make a choice which of the two to switch off. Since the mid-1980s it has been known that a specific region of the X chromosome termed X inactivation center (Xic) is crucial for a correct inactivation process.


Professor Dr. Roland Eils, who leads the bioinformatics departments at the German Cancer Research Center and at the Institute of Pharmacy and Molecular Biotechnology of Heidelberg University, suspected that the spatial arrangement of the Xics within the nucleus is key to inactivation. Working together with colleagues of the Curie Institute, Paris, he searched different cells for distinctive features in the distribution of Xic regions. The scientists compared developing female embryonic stem cells of mice just before X inactivation, with mouse cells in which X inactivation had already taken place. Using a 3-dimensional visualization of fluorescent labels of the Xic regions, they observed that the Xics of both X chromosomes in the developing stem cells were located very close to each other in up to 15 percent of cells. In the comparative cell line, this was found in only about three percent of cells, which constitutes a random result. The formation of pairs (co-localization) was particularly noticeable in the stem cells after about one and a half days of development, i.e. shortly before X inactivation.

A specific loss of DNA (deletion) in the Xic region of one of the two X chromosomes prevents the pairing of Xics. In addition, cells that have forgotten how to count show no pairing at all. The scientist postulate that the pairing of Xic regions is a necessary prerequisite for correct chromosome counting, but they cannot give any information yet as to what kind of interaction there is between the two Xic regions during transient co-localization.

The task of the Deutsches Krebsforschungszentrum in Heidelberg (German Cancer Research Center, DKFZ) is to systematically investigate the mechanisms of cancer development and to identify cancer risk factors. The results of this basic research are expected to lead to new approaches in the prevention, diagnosis and treatment of cancer. The Center is financed to 90 percent by the Federal Ministry of Education and Research and to 10 percent by the State of Baden-Wuerttemberg. It is a member of the Helmholtz Association of National Research Centers (Helmholtz-Gemeinschaft Deutscher Forschungszentren e.V., HGF).

Julia Rautenstrauch | alfa
Further information:
http://www.dkfz.de

More articles from Life Sciences:

nachricht A novel synthetic antibody enables conditional “protein knockdown” in vertebrates
20.08.2018 | Technische Universität Dresden

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Quantum bugs, meet your new swatter

20.08.2018 | Information Technology

A novel synthetic antibody enables conditional “protein knockdown” in vertebrates

20.08.2018 | Life Sciences

Metamolds: Molding a mold

20.08.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>