Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Infection-fighting protein could be key to autoimmune disease

12.01.2006


Scientists at the University of Michigan Medical School have discovered that a protein called cryopyrin responds to invading bacteria by triggering the activation of a powerful inflammatory molecule called IL-1beta, which signals the immune system to attack pathogens and induces fever to protect the body against infection.



The discovery could help scientists understand what causes autoimmune diseases like rheumatoid arthritis where the immune system attacks and destroys tissue in the patient’s body.

"IL-1beta is a master regulator of infection, and it’s known to be involved in the development of rheumatoid arthritis," says Gabriel Nunez, M.D., a professor of pathology in the U-M Medical School, who directed the research study. "So it’s likely that these findings will apply to other autoimmune diseases, as well."


In a study being published Jan. 11 as an Advance Online Publication in Nature, U-M scientists show, for the first time, that cryopyrin is activated by bacterial RNA and that it is essential to the cell’s ability to mount an effective defense against bacteria.

Found in the cytosol, or fluid inside cells, cryopyrin is a member of the NOD-LRR family of proteins, which protect cells against microbial infection. Defective cryopyrin is predicted to be associated with increased susceptibility to infection.

Small mutations in CIAS1 – the human gene for cryopyrin – are known to cause three rare autoinflammatory diseases: familial cold autoinflammatory syndrome, Muckle-Wells syndrome and neonatal-onset multiple-system inflammatory disease. People with these diseases produce uncontrolled amounts of IL-1beta and other inflammatory molecules. This causes them to have recurrent episodes of fever and to develop rashes – often when they are exposed to cold temperatures.

Based on previous research with cell lines, scientists suspected that cryopyrin was an important link between the immune system’s normal job of killing bacteria and the abnormal development of autoimmune diseases. But no one was sure exactly how cryopyrin was "turned on" in living animals or how it stimulated the immune response.

In previous research, the U-M team found that the single-point mutation in CIAS1 – which causes autoinflammatory syndromes in people – activates cryopyrin, even when there is no bacterial RNA present in the cell. "The mutation fools the cell into producing the activated form of cryopyrin, even when bacteria aren’t there," Nunez says.

To decipher cryopyrin’s signal, Thirumala-Devi Kanneganti, Ph.D., a U-M post-doctoral research fellow in pathology, studied immune cells called macrophages and several strains of laboratory mice. One of these strains was unable to produce cryopyrin, because the CIAS1 gene had been removed.

Kanneganti exposed the macrophages and mice to bacterial RNA and to small synthetic molecules called R837 (Imiquimod) and R848 (Resiquimod). These adjuvant molecules activate the pro-inflammatory response in mice and are used as anti-tumor agents and to treat genital warts caused by a virus in human patients.

"We found that cryopyrin was activated and the macrophages began secreting IL-1beta following stimulation with R837 or R848," Kanneganti says. "Since the structure of these molecules is very similar to DNA or RNA, we believe the natural ligand, or activating molecule, for cryopyrin could be DNA or RNA."

In previous research, other scientists discovered a signaling pathway in which molecules called toll-like receptors on the cell’s surface recognize invading bacteria and activate the immune response. But U-M scientists found that cryopyrin uses a different signaling pathway. Activated cryopyrin triggers an enzyme called caspase-1, which splits the immature form of IL-1beta to produce the active form of the molecule. Once IL-1beta is activated, it can be secreted out of the cell where it binds to the IL-1beta receptor on other cells to trigger an immune response.

"These two signaling pathways cooperate," Nunez explains. "The toll-like receptor pathway recognizes bacteria outside the cell, while cryopyrin recognizes bacteria that’s already in the cell. When a toll receptor on the membrane senses bacterial RNA, it activates a signaling pathway called NF-kappaB, which induces the production of IL-1beta. Cryopyrin does the same thing, but it works through caspase-1 to produce the active form of IL-1beta."

In her experiments, Kanneganti confirmed that the signaling pathway requires the presence of cryopyrin. Macrophages and mice that lacked the CIAS1 gene for cryopyrin were unable to generate an immune response when exposed to bacterial products.

The research was funded by the National Institute of Allergy and Infectious Diseases (NIAID). The University of Michigan has filed a patent application on this research technology.

Additional U-M collaborators on the study included Nesrin Ozoren, Mathilde Body-Malapel, Amal Amer, Jong-Hwan Park, Luigi Franchi and Joel Whitfield. Other collaborators were Winfried Barchet and Marco Colonna from the Washington University School of Medicine, Peter Vandenabeele from Belgium’s Ghent University, John Bertin, Anthony Coyle and Ethan P. Grant from Millennium Pharmaceuticals and Shizuo Akira from Japan’s Osaka University.

Citation: Nature DOI: 10.1038/nature04517

Sally Pobojewski | EurekAlert!
Further information:
http://www.umich.edu

More articles from Life Sciences:

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

nachricht Pollen taxi for bacteria
18.07.2018 | Technische Universität München

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>