Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Greyhounds and humans going round the bend

08.12.2005


New research published this week (8 December) has identified the fundamental differences between two and four legged animals that explain what limits their top speeds.



The research, published in the journals Nature and Biology Letters and funded by the Biotechnology and Biological Sciences Research Council (BBSRC), shows how a human running into a high-speed corner is forced to slow down and increase the amount of time their foot is in contact with the ground in order to withstand increased centripetal forces. Four legged animals do not appear to have this limitation.

The scientists at The Royal Veterinary College studied the results of 200m races at the 2004 Olympics and World Indoor Championships to demonstrate that the tighter bends used for the indoor event slow the runners down. To examine if this affects other animals they used high-speed video recording of greyhounds running time trials in an arena. Greyhounds barely change their stride when they sprint around and successfully withstand the increased forces. This is because they appear to power their running in a completely different way to humans.


Dr Jim Usherwood, the project leader, said, “Human sprinters use muscles to run that also have to deal with weight from the combination of centripetal and gravitational forces. Greyhounds get their motive power by torque around their hips and by extending their backs. This means that like a human on a bicycle there is a separation of the body structures providing power and the body structures supporting weight. A greyhound’s top speed is not constrained by cornering forces in the same way a human sprinter’s is.”

Dr Alan Wilson, head of the Royal Veterinary College’s Structure and Motion Laboratory, added, “Understanding the forces experienced by four-legged animals such as greyhounds and how their bodies deal with them means we can use them as a model to help improve the welfare of many animals. If we understand how animals work from a biomechanical perspective then we can understand how they suffer injuries and how they can best be cared for. The fundamental differences that we have shown between what limits running speed in four legged animals and in humans are important in understanding the mechanical limitations to performance and how different animals work.

Professor Julia Goodfellow, BBSRC Chief Executive, said, “Research such as this is important in helping us understand the biomechanics of humans and other animals. If we can gain an insight into how bodies actually move and work then we help to reduce injuries in humans and improve welfare for other animals.”

Matt Goode | alfa
Further information:
http://www.bbsrc.ac.uk

More articles from Life Sciences:

nachricht Tiny Helpers that Clean Cells
14.08.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Light-controlled molecules: Scientists develop new recycling strategy
14.08.2018 | Humboldt-Universität zu Berlin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

Im Focus: A molecular switch may serve as new target point for cancer and diabetes therapies

If certain signaling cascades are misregulated, diseases like cancer, obesity and diabetes may occur. A mechanism recently discovered by scientists at the Leibniz- Forschungsinstitut für Molekulare Pharmakologie (FMP) in Berlin and at the University of Geneva has a crucial influence on such signaling cascades and may be an important key for the future development of therapies against these diseases. The results of the study have just been published in the prestigious scientific journal 'Molecular Cell'.

Cell growth and cell differentiation as well as the release and efficacy of hormones such as insulin depend on the presence of lipids. Lipids are small...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Can radar replace stethoscopes?

14.08.2018 | Medical Engineering

The end-Cretaceous extinction unleashed modern shark diversity

14.08.2018 | Life Sciences

Light-controlled molecules: Scientists develop new recycling strategy

14.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>