Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Potential malaria drug target identified

25.11.2005


Researchers have identified an enzyme crucial to the malaria parasite’s invasion of red blood cells, according to a study in the open-access journal, PLoS Pathogens.



"The most exciting practical implication of this work is that it identifies a potential drug target that is quite different from anything that is targeted by existing antimalarial drugs," Blackman says. "This is very important, since it is widely agreed that the best way to prevent the appearance of drug resistance in any pathogen is to use combinations of drugs that target distinct biochemical pathways."

The most severe form of malaria, a disease that affects over 300 million people annually, is caused by the single-celled parasite Plasmodium falciparum, which was the focus of the study.


A number of different proteins on the surface of malaria parasites help the invaders bind to red blood cells. But once attached to host blood cells, the parasites need to shed the "sticky" surface proteins that would otherwise interfere with entrance into the cell.

"What we have discovered is the parasite enzyme -we refer to it as a ’sheddase’- which sheds the sticky proteins," says Michael Blackman, senior author of the study and parasitologist at London’s National Institute for Medical Research. The enzyme, called PfSUB2, is required for the parasites to invade cells; without it, the parasites die.

The results also shed light on the fundamental mechanisms malaria parasites use to infect cells. "The malaria parasite is related to several other major pathogens, all of which invade cells in a similar manner, so work such as this can have wide-ranging implications," according to Blackman.

Blackman’s team has worked on malarial surface proteins for over 15 years. "We predicted that this enzyme must have the capacity to ’move’ across the surface of the parasite, since the proteins that are shed are themselves distributed all over the parasite surface," he says.

A major challenge in the study was to visualize that motion. "To overcome this, we genetically modified the parasite by ’tagging’ PfSUB2 so that we could visually follow its movement within the parasite. It was only by doing this that we were able to see that PfSUB2 is secreted onto and across the parasite surface," he says.

The enzyme is stored in and released from cellular compartments near the tip of the parasite, according to the study. Once on the surface, the enzyme attaches to a motor that shuttles it from front to back, liberating the sticky surface proteins. With these proteins removed, the parasite gains entrance into a red blood cell. The entire invasion lasts about 30 seconds.

By designing a specific inhibitor that impeded the ability to shed the sticky proteins, Blackman and his team interfered with the enzyme’s normal functioning. A drug--yet to be designed--could possibly do the same, preventing the parasites from infecting blood cells.

Tim Sullivan | EurekAlert!
Further information:
http://www.plos.org
http://dx.doi.org/10.1371/journal.ppat.0010029

More articles from Life Sciences:

nachricht Staying in Shape
16.08.2018 | Max-Planck-Institut für molekulare Zellbiologie und Genetik

nachricht Chips, light and coding moves the front line in beating bacteria
16.08.2018 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Staying in Shape

16.08.2018 | Life Sciences

Diving robots find Antarctic seas exhale surprising amounts of carbon dioxide in winter

16.08.2018 | Earth Sciences

Protein droplets keep neurons at the ready and immune system in balance

16.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>