Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene therapy improves gemcitabine effects in experimental glioma model

01.11.2005


Attempts to improve the chemotherapeutic efficacy and radiotherapy-sensitivity of the anticancer agent, gemcitabine, using gene therapy have yielded interesting results in preclinical glioma models presented at the 13th European Cancer Conference (ECCO).



Investigators took the enzyme that activates gemcitabine, deoxycytidine kinase (dCK) and inserted it into a viral carrier – Ad-dCK. In vitro assay cells from mice, rats and humans, and mice infected with glioma (tumours originating from the spinal cord or brain) were then infiltrated with this gene therapy. Assay cells were subsequently treated with gemcitabine and irradiated. Tumour-bearing mice received an intraperitoneal injection of gemcitabine followed by local tumour irradiation. As gemcitabine is an anticancer agent with established efficacy, use of gene therapy to increase its enzymatic activation was hypothesised to offer potential improvements in chemo- and radiotherapy efficacy.

In vitro findings from the three different experimental glioma varied considerably. In the G1261 mouse cellular assay, increased levels of dCK enzyme activity failed to increase gemcitabine toxicity - although gemcitabine itself had a minor radiosensitising effect. Conversely, in rat C6 and 9L glioma cells, elevated dCK levels were found to substantially improve both gemcitabine toxicity and the radiosensitising effect.


Unsurprisingly, results from in vivo mouse studies mirrored the murine cellular assay findings. Although the combination of gemcitabine and radiotherapy had a pronounced synergistic effect, with 60% of animals tumour-free after 100 days compared to 0% on monotherapy, increased dCK levels did not impact on tumour growth or survival.

Experiments with C6 and 9L rat models are ongoing to further probe the promising increase in chemo- and radiosensitising effects of gemcitabine observed in response to elevated dCK levels. Ultimately, this gene therapy approach may open up avenues to increase the overall efficacy of chemotherapy and radiotherapy.

Speaking at ECCO 13, study author, Dr Katalin Lumniczky from the National Research Institute for Radiobiology, Budapest commented, "These results highlight the important and increasing role that gene therapy will hold for treatments in the future. Radiotherapy along with surgery, is the main therapeutic strategy in the treatment of most cancers. Our research aims to selectively increase radiosensitivity of tumour cells by the means of gene therapy. In this way tumour cells could respond better to conventional doses of radiation, resulting in higher tumour cell kill. This might have two main impacts on the patient. Firstly, patients having a radio-resistant tumour could be treated more successfully without the need to increase radiation doses. Secondly, it would even make it possible to reduce radiation doses in those patients whose normal tissues are known to be more radiosensitive than normal, and who, by this are at a high risk of developing long lasting side-effects after radiation which can substantially reduce their quality of life. Essentially, our research could help both in improving the success rate of radiotherapy and in reducing undesired side-effects."

About Gliomas

Half of all primary brain tumours (those originating from the brain and not from other parts of the body) are classified as gliomas. A glioma refers to a brain tumour that begins in glial, or supportive cells of the brain or spinal cord. There are four types of gliomas, astrocytoma, ependymoma and oligodendroglioma and mixed glioma (mixture of the other types).

The most common type are astrocytomas which develop from cells called astrocytes (type of cell that supports neurones). As with all types of gliomas, they are classified as either high grade or low grade. High grade tumours are malignant and difficult to treat whereas low grade tumours are slow growing and treatable.1

Unlike other cancers, the geographical incidence of brain tumours should be cautiously interpreted as the criteria and registration of brain tumours is not always consistent. However, the incidence does rise from the age of thirty, with males more likely to be diagnosed with gliomas than females with a ratio of 1.5:1.2

The causes of gliomas are largely unknown. By studying large numbers of patients, researchers have found certain risk factors that increase a person’s chance of developing gliomas . Some studies have shown that working in certain industries increases a person’s susceptibility to a glioma. Researchers are currently looking into the possibility of exposure to viruses as another possible cause and some scientists are investigating whether it might be hereditary. 3

Treatment options include surgery, radiotherapy and chemotherapy. Recently, there are a number of new anti-cancer treatments such as the anti-metabolites (interfere with the growth of cancer cells) e.g. gemcitabine, currently in clinical trials for possible treatment of gliomas.4

Kirsten Mason | EurekAlert!
Further information:
http://www.fecs.be/emc.asp
http://www.cancer.org.uk
http://www.medterms.com

More articles from Life Sciences:

nachricht Seeing on the Quick: New Insights into Active Vision in the Brain
15.08.2018 | Eberhard Karls Universität Tübingen

nachricht New Approach to Treating Chronic Itch
15.08.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Unraveling the nature of 'whistlers' from space in the lab

15.08.2018 | Physics and Astronomy

Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide

15.08.2018 | Earth Sciences

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>