Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sisyphean movement of motor proteins may help preserve DNA integrity

27.10.2005


Researchers studying how proteins called helicases travel along strands of DNA have found that when the proteins hit an obstacle they snap back to where they began, repeating the process over and over, possibly playing a preventative role in keeping the genome intact.


A helicase (blue) moves rapidly on a highly flexible DNA track. Such movement may prevent the accumulation of toxic proteins on the DNA. Graphic courtesy Taekjip Ha



Taekjip Ha, a professor of physics at the University of Illinois at Urbana-Champaign and a Howard Hughes Medical Institute investigator, likens the biological scenario to Boston Red Sox baseball; the team rolls along only to hit a late-season obstacle called the New York Yankees. Then, like the always-anticipated annual cry from Chicago Cubs fan, it’s back to square one next year.

However, instead of causing more misery, as is the case for a baseball fan, this motor protein’s starting over may serve a beneficial purpose, clearing other, undesired proteins from the DNA, Ha said. The research was done in vitro, using purified proteins and studied with a technique that visualizes individual molecules on DNA. Whether the scenario plays out in real cells in not known and under exploration.


The discovery appears in the Oct. 27 issue of the journal Nature, along with a separate "News & Views" article by Eckhard Jankowsky, a biochemist at the Center for RNA Molecular Biology in Case Western University’s School of Medicine, who wrote about the potential importance of the findings.

Ha’s postdoctoral fellow Sua Myong led the study, looking at the Rep helicase from an E-coli bacterium. Rep is known to be involved in restarting DNA replication stalled by DNA damage. As a single protein, a monomer, Rep can travel one way along a single strand of DNA but by itself cannot unzip it. Rep’s progress was visualized using the single molecule fluorescence resonance energy transfer (FRET) technique that Ha had developed.

By tagging the protein and DNA with green and red dyes, Myong measured FRET changes as Rep traveled along single DNA strands, which are short segments extending out from double strands. Each time the protein reached either the junction of the full double-stranded DNA or hit an artificially created protein obstacle, Rep instantly returned to near the beginning of the single strand on which it had initially bound.

Upon closer examination using FRET, researchers discovered that Rep’s configuration gradually closed as it reached the obstacle in its path. Then, conformational changes of Rep allow it to grab and transfer to the end of the single-stranded DNA, leading to the next cycle.

"Although the very flexible single strand of DNA likely bombards the protein constantly, the protein doesn’t seem to pay attention to this overture until it hits a physical blockade," Ha said.

Researchers had theorized that obstacles would force motor proteins to disengage from DNA. "The finding was totally unexpected and may indicate a new function for the protein," Ha said. Jankowsky wrote that scientists "should not immediately search for the helix that the enzyme unzips, but instead remember how Rep snaps back."

In cells, single strands of DNA often occur when something is wrong, Ha said. The recycling action, he said, may represent a desirable function of the protein by keeping it engaged on a single strand, allowing time for repairs that allow normal DNA replication.

The human body has more than 200 types of helicases involved in replication, transcription, repair and other genetic processes, Ha said. Defective helicases have been linked to increased cancer risks and premature aging.

Co-authors with Myong and Ha were Ivan Rasnik, a former postdoctoral fellow who now is a professor of physics at Emory University in Atlanta; Chirlmin Joo, a doctoral student in Ha’s lab; and Timothy M. Lohman, a professor of biochemistry and molecular biophysics at the Washington University School of Medicine in St. Louis.

Jim Barlow | EurekAlert!
Further information:
http://www.uiuc.edu

More articles from Life Sciences:

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

nachricht Pollen taxi for bacteria
18.07.2018 | Technische Universität München

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>