Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New crystal structure of Alzheimer’s drug predicted

22.09.2005


Issued by EPSRC on behalf of the UK e-Science Programme
Highlight from forthcoming e-Science All Hands meeting 2005

A challenge, presented at last year’s e-Science All Hands meeting, has resulted in an e-Science project achieving one of the holy grails of the pharmaceutical industry – the computational prediction of a previously unidentified crystal structure, or polymorph, of a drug molecule.


Researchers working on the e-materials project picked up the gauntlet and successfully predicted a new polymorph of the Alzheimer’s drug, piracetam. The work of the e-materials project will be presented at this year’s e-Science All Hands meeting which is being held in Nottingham from 20-22 September 2005.

The action of a drug is dependent not only on its chemical composition, but also on the way in which the drug molecules arrange themselves. For example, crystal structure can affect the drug’s solubility and hence its rate of absorption into the bloodstream. An unexpected polymorph could alter the drug’s therapeutic properties if it inadvertently contaminated the standard formulation.

Polymorphs are the bane of the pharmaceutical industry because they can be difficult to predict. Industrial chemists put a lot of effort into searching for new polymorphs using experimental techniques, but they can never be sure they have found them all. A new polymorph can turn up years later, sometimes resulting in the withdrawal of a drug from the market whilst the problem is identified and solved. Pharmaceutical companies are also keen to patent every polymorph of a drug to prevent a rival from undercutting them later with a new, therapeutically effective version.

The e-materials project, funded by the Engineering and Physical Sciences Research Council (EPSRC) as part of the e-Science Core Programme, is applying Grid technologies to address this problem. "We chose to study piracetam because it’s a well understood drug with three known polymorphs. We thought it was a good one to test our new methods against," says Professor Sally Price from University College, London (UCL).

After presenting her work at last year’s e-Science All Hands meeting, Professor Price was presented with a challenge. Dr Colin Pulham from the University of Edinburgh asked her to predict the crystal structure of a new polymorph of piracetam that he had discovered using high pressure crystallisation techniques. "I told Professor Price that we had discovered a new form, but I didn’t tell her what is was. If her techniques were effective, she should be able to find it," he says.

Predicting polymorphism in molecular structures is computationally very demanding. Millions of possible structures need to be analysed to identify those that are likely to be the most stable. Professor Price conducted the piracetam analysis on a campus grid at UCL. The e-materials project is building up a database containing the outputs of polymorphism searches and analysis at the Central Laboratory for the Research Councils (CCLRC). The database and a dataportal will shortly be available on the National Grid Service, providing information on an increasing range of molecules that may help identify other new polymorphs.

A few months after her challenge, Professor Price submitted a list of candidate structures in order of probability. The first on the list matched the structure that Dr Pulham and his team had found experimentally. "It was bang, spot on," he says. "This result does a lot for the credibility of our methodology," adds Professor Price.

The two continue to collaborate over other molecular polymorphisms, with Professor Price’s predictions of new polymorphs guiding Dr Pulham’s experiments, as well as vice versa. The next challenge is to develop the new e-Science techniques further to find polymorphism in increasingly complex molecules.

Judy Redfearn | EurekAlert!
Further information:
http://www.epsrc.ac.uk
http://www.allhands.org.uk/

More articles from Life Sciences:

nachricht Seeing on the Quick: New Insights into Active Vision in the Brain
15.08.2018 | Eberhard Karls Universität Tübingen

nachricht New Approach to Treating Chronic Itch
15.08.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Unraveling the nature of 'whistlers' from space in the lab

15.08.2018 | Physics and Astronomy

Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide

15.08.2018 | Earth Sciences

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>