Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Montreal researchers probe the genetic basis of memory

31.08.2005

A group of Montreal researchers has discovered that GCN2, a protein in cells that inhibits the conversion of new information into long-term memory, may be a master regulator of the switch from short-term to long-term memory. Their paper Translational control of hippocampal synaptic plasticity and memory by the eIF2a kinase GCN2, which was published in the August 25th issue of the journal Nature, provides the first genetic evidence that protein synthesis is critical for the regulation of memory formation.

This new discovery is the fruit of an international collaboration. The work of McGill researchers Nahum Sonenberg, Karim Nader, Wayne Sossin and Claudio Cuello, Jean-Claude Lacaille and Nabil Seidah of the Université de Montréal, and David Ron of New York University sheds light on the mysterious workings of the hippocampus, a region of the brain responsible for learning and memory.

"Not all new information we acquire is stored as long-term memory," says Dr. Costa-Mattioli, a post-doctoral fellow in the laboratory of Dr. Sonenberg, who spearheaded the research project. "For example, it takes most people a number of attempts to learn new things, such as memorizing a passage from a book. The first few times we may initially succeed in memorizing the passage, but the memory may not be stored completely in the brain and we will have to study the passage again."

In a series of experiments, the researchers demonstrated that mice bred without the GCN2 protein (known as transgenic mice) acquire new information that does not fade as easily as that of normal mice. This new information is more frequently converted into long-term memory. The researchers concluded that GCN2 may prevent new information from being stored in long-term memory.

Adds Dr.Jean-Claude Lacaille: "The process of switching to long-term memory in the brain requires both the activation of molecules that facilitate memory storage, and the silencing of proteins such as GCN2 that inhibit memory storage."

Although research on humans is still a distant possibility, the scientists believe their discovery may hold promise in the treatment of a variety of illnesses linked to memory. "The discovery of the role of GCN2 in long-term memory may help us develop targeted drugs designed to enhance memory in patients with memory loss due to illnesses such as Alzheimer’s disease, where protein synthesis and memory are impaired," concludes Dr. Karim Nader.

| EurekAlert!
Further information:
http://www.umontreal.ca

More articles from Life Sciences:

nachricht Seeing on the Quick: New Insights into Active Vision in the Brain
15.08.2018 | Eberhard Karls Universität Tübingen

nachricht New Approach to Treating Chronic Itch
15.08.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Interactive software tool makes complex mold design simple

16.08.2018 | Information Technology

Study tracks inner workings of the brain with new biosensor

16.08.2018 | Health and Medicine

Fraunhofer HHI develops next-generation quantum communications technology in the UNIQORN project

16.08.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>