Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Alteration of brain protein regulates learning

18.08.2005


Researchers at UT Southwestern Medical Center have identified a biochemical switch that affects how neurons fire in a part of the brain associated with learning, findings that may aid in understanding schizophrenia and Alzheimer’s disease.



The research sheds new light on the action of reelin, a protein known to be important in the nervous system. During development, reelin sends cues to migrating neurons, telling them where they’re supposed to go. In adult mice, reelin has recently been implicated in the formation of memories, and reduced production of reelin has been associated with schizophrenia in humans.

In a report published in the Aug.18 issue of the journal Neuron, Dr. Joachim Herz, professor of molecular genetics and a member of the Center for Basic Neuroscience at UT Southwestern and the paper’s senior author, studied an area of the brain called the hippocampus, which is important for learning. He and his colleagues focused on the interaction of reelin and two other molecules, Apoer2 and the NMDA receptor.


In the nervous system the NMDA receptor is embedded in the membrane of synapses - gaps between nerve cells - where it is involved in receiving signals from other nerve cells. Apoer2 is another receptor which is associated with the NMDA receptor. When reelin encounters the cell, it attaches to Apoer2, which then boosts the activity of the NMDA receptor by promoting a chemical modification of the part of the NMDA receptor inside the cell. The result of this modification is that signals being received by the nerve cell are amplified - and better reception means better learning.

This transition in the primary function of Apoer2, from guiding neurons in the embryonic brain to regulating synaptic signaling, occurs around the time of birth. A small string of amino acids, the building blocks of proteins, gets added near one end of Apoer2 and is essential for this new function. Adding the new amino acids is similar to cutting a rope, splicing in a short portion, and lashing the ends in place.

This longer form of Apoer2 is necessary for reelin to act upon the NMDA receptor, Dr. Herz and his colleagues found. When reelin binds to the longer Apoer2, the NMDA receptor alters its structure and actions, resulting in the strengthening of the signals the nerve cells receive.

When the researchers created mutant mice in which Apoer2 was missing the spliced portion, they found that the mice had difficulties with learning and memory. They were slow to learn where a hidden platform was in murky water, among other tasks, and when the electrical activity of neurons was measured in the hippocampus of these mice there was no longer any detectable reaction to reelin.

Thus, the extra string of amino acids in Apoer2 seems to work like a switch that patches the reelin signal through to the NMDA receptor and, thereby, plays a central role for learning and memory in the whole animal.

In addition to reelin, Apoer2 binds to a protein called ApoE. One form of this molecule, called ApoE4, has been shown to substantially increase the risk of Alzheimer’s disease in older people. Understanding how ApoE4 functions in the brain and interacts with ApoE receptors, such as Apoer2, is critical for gaining further insight into the mysterious mechanisms that cause this debilitating neurodegenerative disease, Dr. Herz said. The loss of synapses that occurs in Alzheimer’s disease is the primary cause for the dementia in the afflicted patients.

"Our findings put ApoE receptors at the heart of the matter," said Dr. Herz.

Other UT Southwestern researchers involved in the study were Dr. Uwe Beffert, postdoctoral researcher in biophysics and molecular genetics and lead author of the study; Dr. Robert Hammer, professor of biochemistry; Dr. Wei-Ping Li, assistant professor of cell biology; Andre Durudas, student research assistant in internal medicine; and Irene Masiulis, student research assistant in biophysics and molecular genetics. Researchers from Vanderbilt University, Baylor College of Medicine and the Center for Neuroscience in Freiburg, Germany, also participated.

The work was supported by the National Institutes of Health, the Alzheimer’s Association, the Wolfgang Paul Award of the Alexander von Humboldt Foundation, the Perot Foundation, the American Health Assistance Foundation, the Human Frontier Science Program, the Canadian Institutes of Health Research and the Deutsche Forschungsgemeinschaft.

Aline McKenzie | EurekAlert!
Further information:
http://www.utsouthwestern.edu

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Epoxy compound gets a graphene bump

14.11.2018 | Materials Sciences

Microgel powder fights infection and helps wounds heal

14.11.2018 | Health and Medicine

How algae and carbon fibers could sustainably reduce the athmospheric carbon dioxide concentration

14.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>