Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Huntington’s cure in flies lays groundwork for broader treatment approaches

12.07.2005


MADISON-Boosting levels of two critical proteins that normally shut down during Huntington’s disease, researchers at the University of Wisconsin-Madison and the Cold Spring Harbor Laboratory have cured fruit flies of the genetic, neurodegenerative condition.



Forms of the same proteins-known in short form as CREB and HSP-70--exist in all cells, including those of humans.

The study results, published online today by the Proceedings of the National Academy of Sciences, were a "logical finding" because of a growing body of work in the area, says senior author Jerry Yin, a UW-Madison molecular geneticist. Scientists previously knew, for example, that hiking the activity of either CREB or HSP-70 lessened symptoms in mice or flies with Huntington’s disease.


Completely reversing a disease by targeting a combination of proteins or genetic pathways, however, reflects the growing need to embrace a broader treatment paradigm in the realm of genetic disorders, says Yin.

In working with a disorder such as Fragile X Syndrome, for example, conventional therapies might focus all their efforts on repairing the genetic pathways that cause neurons to go awry. Meanwhile, "the defective gene is not just in one type of tissue," says Yin. "And we are not yet sensitive to detecting the defects in those other tissues."

Rather than focusing treatment strategies on single genetic pathways, then, Yin believes a promising alternative might be to simultaneously target a cocktail of gene-induced activities - all of which are set in motion, for example, by a single faulty gene.

Yin has long worked in the area of "triplet expansion" diseases such as Huntington’s and Fragile X, in which genes go haywire due to a coding defect. His collaborators on the recent fruit fly work include, among others, lead author Kanae Iijima-Ando of the Cold Spring Harbor Laboratory and UW-Madison assistant scientist Eric Drier.

Working with the simplistic genetics of flies is certainly a long way from the complex realities of humans, Yin says, particularly for diseases that can be attributed to dozens and even hundreds of abnormal gene functions.

Yet in some cases, it might turn out that gene pathways stemming from different genes converge at some point, into one common "superhighway," says Yin. "If you know that, you can do something in the superhighway part," he says.

Researchers studying epilepsy, for example, have discovered that at least 20 genes have a role to play in the onset of seizures, and dozens more may be involved. Though many might argue for directing research dollars to the continued search for epilepsy genes, Yin believes funding agencies should now consider investing in the search for these "superhighways" of gene convergence.

That search might be long and tedious, he adds, but it’s most certainly worth a shot. "I think the history of scientific discovery teaches us that we can’t predict anything. So we just have to play all the cards we can possibly play."

Jerry Yin | EurekAlert!
Further information:
http://www.wisc.edu

More articles from Life Sciences:

nachricht The secret sulfate code that lets the bad Tau in
16.07.2018 | American Society for Biochemistry and Molecular Biology

nachricht Colorectal cancer risk factors decrypted
13.07.2018 | Max-Planck-Institut für Stoffwechselforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Research finds new molecular structures in boron-based nanoclusters

13.07.2018 | Materials Sciences

Algae Have Land Genes

13.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>