Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fishing up chromosomes

21.04.2005


Researchers at the University of Dundee have made a significant new discovery on how cells behave and protect themselves against cancers and congenital disorders as reported in Nature tomorrow (Thursday April 21).



Dr Tomo Tanaka and his team members at the University’s School of Life Sciences, Drs Kozo Tanaka, Naomi Mukae and Hilary Dewar, in collaboration with Drs Euan James and Alan Prescott and researchers in Germany, have uncovered how cells prepare for the process of chromosome separation.

All human cells, except eggs and sperms, contain 46 chromosomes, all of which carry vital genetic information. Because genetic information is crucial for the proper function of cells for the organs and tissues that they organise, all chromosomes must be precisely copied and separated into two cells, known as the daughter cells, during each cell division. Otherwise cells would die, become transformed into cancer cells, or cause congenital diseases such as Down’s syndrome.


Cells regulate chromosome separation by a network of threads called microtubules. To prepare chromosome separation, the microtubule network must first capture chromosomes. However, how microtubules capture chromosomes has until now been a complete mystery. By visualizing this step in live cells, the research team has successfully analysed the crucial but so-far concealed process.

Dr Tomo Tanaka says "We can liken chromosomes to big fishes that must be caught. To catch the fishes, cells are equipped with sophisticated fishing lines that are called microtubules. Our study discovered which parts of ’fishes’ are hooked up on the ’fishing line’ and how ’fishes’ are pulled in using the ’fishing line’. Very interestingly, the strength of the ’fishing line’ is enhanced only when ’fishes’ are caught on the line. We discovered how cells make this happen. I do not think any grand master of fishing can beat cells in our body, whose ’fishing lines’ or microtubules are never broken when they pull gigantic ’fishes’ out of water."

The research team believes that this is one of the most crucial steps on how cells assure their chromosome inheritance during their divisions to prevent cell death, cancers and other diseases. The team is currently trying to discover what ’baits’ are used to attract ’big fishes’ towards ’fishing lines’.

Dr Tomo Tanaka is a Wellcome Trust Career Development Fellow and Principal Investigator in the Division of Gene Regulation and Expression based in the Wellcome Trust Biocentre at the University of Dundee’s School of Life Sciences. The research is funded by The Wellcome Trust and Cancer Research UK.

Angela Durcan | alfa
Further information:
http://www.dundee.ac.uk/pressreleases/prarp05/chromosomes.html

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>