Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New technique finds molecules necessary for cancer metastasis

05.04.2005


Provides unique drug targets to prevent spread

Tufts University researchers have identified several proteins on the surface of cancer cells that contribute to the cells’ ability to metastasize. When the researchers destroyed these particular proteins, the cancerous cells show a significant decrease in their ability to invade healthy cells – a finding that provides a new target for badly needed drugs. Although most cancer deaths occur from metastasis, not from the original cancer itself, no drug treatments are currently available specifically to prevent the spread of the cancer from the original site to other organs. The team also has discovered new roles related to the spread of cancer in two molecules known for other, non-cancer activities.

Dr. Daniel Jay presented the study on Sunday, April 3, at Experimental Biology 2005 in San Diego, as part of the scientific sessions of the American Society for Biochemistry and Molecular Biology.



The findings were made possible, says Dr. Jay, because he and his colleagues have developed a new Fluorform-Assisted Light Inactivation technology (FALI) that is a new generation of the Chromophore-Assisted Laser Inactivation (CALI) technique he created 17 years ago to inactivate specific proteins in living cells at precise times and locations. The researchers are able to destroy a specific protein, sparing all other proteins attached to the cell as well as the cell itself, by targeting the antibody to that specific cell. They tag the antibody with a dye that absorbs a specific wavelength of light. When the light is turned on (earlier technology required lasers; the new FALI technology needs only the light of a slide projector), the light energy absorbed by the dye in the antibody generates free radicals that destroy the specific protein bound by that antibody.

What gives the new FALI approach its power, says Dr. Jay, is its high throughput and its ability to couple with the large antibody libraries now available. Whereas the team used to look at one protein at a time, it now can rapidly scan thousands of the proteins associated with cancer cells, systematically "knocking out" one at a time and looking for those whose absence on the cell causes a significant decrease in invasiveness.

At the Experimental Biology 2005, Dr. Jay also describes two of the molecules identified by the FALI approach to have large implications for metastasis. Both were well known to scientists, but the Jay team is the first to recognize the roles they play in cancer. The first molecule, HSP90A, is a molecular chaperone that facilities the folding and activation of different proteins within the cells. The Jay laboratory was the first to recognize HSP90A also had a role outside the cell; it activates a particular matrix metalloprotease required for restructuring the surrounding matrix as cells move and invade.

The second molecule, the polio virus receptor CD155, has been recognized for decades as the pathway by which the polio virus is able to enter motor neurons in the nervous system. Dr. Jay and his team have found that the receptor also plays a role in how brain tumor cells move in the brain, spreading to healthy cells.

"Our current interest is cell motility related to the spread of cancer," says Dr. Jay, "but the speed and sensitivity of the FALI approach gives it wide applicability as a method to identify functionally important proteins in a variety of disease processes."

Coauthors of the presentation are Brenda Eustace, Takashi Sakurai, and Kevin Sloan. Funding for the study came from the National Cancer Institute and the Goldhirsh Foundation.

Sarah Goodwin | EurekAlert!
Further information:
http://www.faseb.org/

More articles from Life Sciences:

nachricht Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View
22.06.2018 | University of Sussex

nachricht New cellular pathway helps explain how inflammation leads to artery disease
22.06.2018 | Cedars-Sinai Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>