Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Important New Research Identifies How Brain Cells Die During A Stroke

28.01.2005


Medical Research Council (MRC) scientists, in collaboration with colleagues from British and Italian universities, have unveiled a mechanism that causes the death of brain cells (neurons) in stroke. The discovery may help explain why some therapy approaches for stroke have been unsuccessful and identifies potential research avenues for the development of new treatments for stroke and other degenerative brain diseases.



Stroke is a consequence of an abrupt interruption of blood flow to the brain. When the blood supply stops, the nerve cells that are directly deprived of oxygen quickly die and release the chemicals that they use to communicate with each other. One of these neurotransmitters – glutamate – spreads to surrounding cells and sets off a process called excitotoxicity, causing much more widespread cell death. Glutamate triggers a flood of calcium ions into the cells and, for reasons not previously understood, the level of calcium continues to rise and this kills the neurons.

The new research, carried out at the MRC’s Toxicology Unit in Leicester, studied the mechanism of calcium overload in neurons after reduction in blood supply to areas of the rat brain. The initial flood of calcium activates enzymes called calpains, which break down the proteins in the cell membrane that normally pump calcium out of the cell.


For many years research has concentrated on trying to block the inflow of calcium, in the hope of preventing brain damage in stroke. But the new findings suggest that the main defect is in the removal of calcium from neurons. This opens up new opportunities for the development of drugs to reduce nerve cell death, not only in stroke but also in degenerative brain disorders.

Each year over 130,000 people suffer from a stroke in England and Wales and acute stroke remains a major cause of death or severe chronic disability.

Research group leader and Unit Director, Professor Pierluigi Nicotera said:
“Work at the MRC Toxicology Unit has unveiled the process that destroys the primary line of defence against calcium accumulation in the brain, which explains the build-up of lethal calcium levels in neurons.

“This is an exciting discovery because these findings go some way to explaining why therapy aimed solely at decreasing calcium entry in brain cells has been unsuccessful. This research identifies potential novel targets for treatment of stroke and other neurodegenerative diseases. The findings may lead to new drugs which will treat these conditions successfully.”

Professor Colin Blakemore, Chief Executive of the Medical Research Council, said:
“This research is an important step forward for the development of new and more effective treatments for stroke – one of the most common conditions affecting the elderly in the UK. And, as the UK’s elderly population continues to grow, so does the importance of targeting the diseases that are common in later life.

“Through the creation of the new UK Clinical Research Collaboration, the MRC will work in partnership with the NHS, medical charities and industry to speed up the development of new treatments so that more patients can benefit more quickly form the latest scientific advances.”

Press Office | alfa
Further information:
http://www.mrc.ac.uk

More articles from Life Sciences:

nachricht Seeing on the Quick: New Insights into Active Vision in the Brain
15.08.2018 | Eberhard Karls Universität Tübingen

nachricht New Approach to Treating Chronic Itch
15.08.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Unraveling the nature of 'whistlers' from space in the lab

15.08.2018 | Physics and Astronomy

Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide

15.08.2018 | Earth Sciences

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>