Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gentler processing may yield better molecular devices

26.01.2005


A simple, chemical way to attach electrical contacts to molecular-scale electronic components has been developed by researchers at the National Institute of Standards and Technology (NIST). The recently patented* method attaches a layer of copper on the ends of delicate molecular components to avoid damage to the components that commonly occurs with conventional techniques.


Copper contact deposition on organic electronic molecules using the NIST patented process is highly specific, an important feature for building dense arrays of devices. Shown here is a cross-hatched pattern of copper deposits on 10-micrometer-wide, single-layer strips of molecules that have been bound to a gold substrate with microcontact printing.



Molecular electronics--designing carbon-based molecules to act as wires, diodes, transistors and other microelectronic devices--is one of the most dynamic frontiers in nanotechnology. An area equal to the cross-section of a typical human hair might hold about a thousand semiconductor transistors at the current state of art, but up to 13 million molecular transistors.

A key challenge in molecular electronics is making electrical contacts to the fragile molecules, chemical chains that are easily damaged. Currently, this is most often done by vaporizing a metal onto the molecules that stand like blades of grass on a metal substrate. The vaporized metal atoms are supposed to settle on the tops of the molecules but they also often eat away at the delicate structures, or fall through gaps in the "turf" and short out the device. Yields of working devices are typically only a few percent.


NIST researchers designed a technique in which the molecules are synthesized with an additional chemical group attached to the top of the molecule. The chip is immersed in a solution including copper ions, which preferentially bind to the added group, forming a strong, chemically bonded contact that also protects the underlying molecule during further metallic vapor deposition steps. Tests at NIST have demonstrated that the technique works well on surfaces patterned with microcontact printing, producing clean, sharply defined edges, important for the fabrication of practical devices.

Michael Baum | EurekAlert!

More articles from Life Sciences:

nachricht Staying in Shape
16.08.2018 | Max-Planck-Institut für molekulare Zellbiologie und Genetik

nachricht Chips, light and coding moves the front line in beating bacteria
16.08.2018 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Staying in Shape

16.08.2018 | Life Sciences

Diving robots find Antarctic seas exhale surprising amounts of carbon dioxide in winter

16.08.2018 | Earth Sciences

Protein droplets keep neurons at the ready and immune system in balance

16.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>