Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genes in the interferon system important in SLE

19.01.2005


Two genes with very strong associations with the disease SLE have been identified by a team of scientists headed by researchers at the Department of Medical Sciences at Uppsala University. The findings are being published today on the Web page of the highly prestigious American Journal of Human Genetics.



“These findings are probably the first genetic pieces of a huge ‘interferon puzzle,’ with whose help it will be possible to discover the mechanisms behind the disease SLE, and maybe other autoimmune diseases at the molecular level,” says Professor Lars Rönnblom.

“It is remarkable that by studying only eleven of the some 200 genes that are seen as belonging to the interferon system, we were able to identify two genes with such clear connection to SLE,” says Professor Ann-Christine Syvänen.


A few years ago Lars Rönnblom and Professor Gunnar Alm at the Swedish University of Agricultural Sciences were virtually the only researchers who claimed that the interferon system, which is involved in the body’s defense against viruses, etc., was also behind the autoimmune disease SLE. Since then they have shown the importance of the interferon system in a number of works. This has led to the recognition of their hypothesis in the last year, and today it represents a white-hot field of research that has attracted a great deal of interest in the pharmaceutical industry. This picture has now been further reinforced by new findings­ - the result of multidisciplinary and international collaboration involving world experts on the interferon system, immunology, and the disease SLE, combined with world leaders in the technology for large-scale genetic analyses and statistics. The genetic and statistical analyses were performed by the doctoral student Snaevar Sigurdsson and Professor Ann-Christine Syvänen at the Center for Clinical Medical Research at Uppsala University.

The study, comprising nearly 2,000 individuals, shows that two genes in the interferon system are very strongly associated with the disease SLE. One of the genes codes for a so-called thyrosinkinase enzyme, whose function is to convey signals from interferon outside the cells to the cell nucleus.

“We found that genetic variants of thyrosinkase protect against SLE. It probably has an inhibited function that blocks the interferon effect. It is therefore possible to imagine the development of methods of treatment for SLE based on blocking the function of the thyrosinkinase enzyme,” explains Lars Rönnblom.

The other gene codes for a transcription factor, which also plays an important role in regulating the interferon effect. Further functional analyses will be necessary to map the molecular mechanisms in detail.

Besides the Rheumatology Clinic at Uppsala Akademiska Hospital, hospitals in Umeå and Lund, in Sweden, and several hospitals in Finland as well as one hospital in Reykjavik provided the project with DNA samples and diagnostic information from SLE patients.

Anneli Waara | alfa
Further information:
http://www.uu.se
http://www.journals.uchicago.edu/AJHG/journal/issues/v76n3/41895/brief/41895.abstract.html

More articles from Life Sciences:

nachricht Researchers target protein that protects bacteria's DNA 'recipes'
21.08.2018 | University of Rochester

nachricht Protein interaction helps Yersinia cause disease
21.08.2018 | Schwedischer Forschungsrat - The Swedish Research Council

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Air pollution leads to cardiovascular diseases

21.08.2018 | Ecology, The Environment and Conservation

Researchers target protein that protects bacteria's DNA 'recipes'

21.08.2018 | Life Sciences

A paper battery powered by bacteria

21.08.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>