Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Emory chemists create unprecedented metallic molecule

26.11.2004


For the first time ever, Emory University researchers have broken through the so-called "oxo-wall" to create stable multiple chemical bonds between oxygen and platinum – once thought impossible because oxygen is extremely unstable when combined with certain metals. The breakthrough holds the potential for numerous applications in fuel cells, catalytic converters and emerging ’green’ chemistry.



Chemical bonds between metals and oxygen are known as metal-oxo species, and are found in a multitude of molecules and materials. They are dominant in the chemistry, geology and biology of many metal elements, especially during oxidation – one of the most basic and fundamental of chemical reactions. However, metal-oxo species become increasingly less stable as one moves from left to right on the periodic table. Until this work, attempts to create metal-oxo species with elements such as gold, platinum, silver, iridium and rhodium have been unsuccessful.

"The existence of such metal-oxo complexes has been presented and debated in many public forums but never realized until this research. Since this metal-oxo is a unique compound, both its physical properties and its chemical reactivities should provide new insights and break new ground," says principal investigator Craig Hill, Goodrich C. White Professor of Chemistry at Emory.


The paper will appear in the Nov. 25 edition of Science Express, an online publication of selected research papers that have recently been accepted for publication in the journal Science. "Oxygen is usually very unreactive in its molecular state as O2, or, when you do break the bond, it reacts uncontrollably. In nature, iron is one of the most versatile elements in its ability to control oxygen, and can pluck a single oxygen atom and transfer it where it wants to go. We wanted to take what nature knows how to do with iron, and do it ourselves with other metals," says Travis Anderson, lead post-doctoral researcher for the project. He says the next step will be to create metal-oxo bonds with platinum’s neighbors on the periodic table.

"Out of the 12 metals that have been behind this ’oxo-wall’ in columns 9-12 of the periodic table it is very exciting that we were able to create metal-oxo compound with platinum since it is an excellent catalyst for environmentally friendly processes," Anderson says.

Stable compounds of platinum and oxygen could be centrally important to the operation of automobile catalytic converters. Catalytic converters use a platinum catalyst to interact with oxygen in the air to form highly reactive platinum-oxygen intermediates and other species that fully combust the partially burned fossil fuels emanating from the internal combustion engine. The platinum-oxo compound is expected to be a model for these highly elusive platinum-oxygen intermediates and, as such, could provide key insights into improving existing technology.

One important and growing technology where the platinum-oxo unit may also be key is fuel cells. The electrodes in these cells are frequently based on platinum, and in some instances the reaction of platinum with oxygen is central to their operation.

In addition, metallic platinum has long been known to be an excellent catalyst for oxidations of organic compounds. Today, oxidations by O2 (including air) are of considerable and growing interest in part because they are quite green. In other words, such organic oxidations, which are important in several industries, can, in principle, generate fewer inorganic by-products, work under more benign conditions, permit products to be separated more easily and generate less waste. Platinum-oxo species could well be the critical intermediates in these diverse O2-based oxidations.

The Science paper was authored by Hill; Anderson; chemistry professor Keiji Morokuma; Jamal Musaev, manager of Emory’s Cherry L. Emerson Center for Computational Chemistry; Emory graduate students Wade Neiwert and Rui Cao; and collaborators at Argonne National Lab and the University of New Mexico.

Beverly Clark | EurekAlert!
Further information:
http://www.emory.edu

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>