Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

’Mighty mouse’ helping find ways to prevent osteoporosis

16.09.2004


A genetically engineered ’mighty mouse’ is helping Medical College of Georgia researchers find the best way for young people to build bone and avoid osteoporosis.



"We are interested in kids; we want to know how to maximize their bone during peak periods of growth while they still can," says Dr. Mark Hamrick, bone biologist. "One of the best predictors of who is going to get osteoporosis and who is not is how much bone you have at sexual maturity. So we want to know what people can do from zero to age 18 that really is going to pack that bone on." These mighty mice, with up to 70 percent more muscle mass than a regular mouse and essentially no body fat, and a $1 million grant from the National Institutes of Health are helping Dr. Hamrick answer that question. The mice lack the myostatin gene, a negative regulator of muscle mass. "Lots of genes control muscle development," says Dr. Hamrick. "This one is pretty significant in terms of not letting muscles get too big."

Myostatin is expressed at highest levels during development, when the embryo is growing, to ensure that muscles don’t overgrow, Dr. Hamrick says. The level expressed changes naturally over the course of life. "It’s still expressed as children grow and is present in very low levels in adults," he says. "It’s suggested that you might get rises in myostatin levels with aging, which is associated with a loss of muscle mass that typically accompanies increased age. " Some muscle-wasting diseases as well as space flight and extended bed rest also are associated with increased myostatin levels. Numerous products claim to help adults build muscle by turning off this powerful muscle regulator produced by muscle cells, Dr. Hamrick says. But the only product scientifically proven to block myostatin is a monoclonal antibody now under study for its potential to treat muscular dystrophy, he says.


The muscular rodents that result when myostatin is taken out of the equation are enabling scientists to explore the hypothesis that one of the best ways to build bone is to build muscle. "People have argued for many years that the way to increase bone density and strength is force – bones respond to the stress and strain placed on them by forming more bone – and the best way to increase that force is big muscles," says Dr. Hamrick. "We want to know if that is the case. We want to know if certain genes involved in bone formation are up-regulated with increased muscle and if these genes are stress-responsive genes.

"We also want to know if muscle can affect bone in other ways. Maybe it affects different hormones. Maybe it’s a source of different growth factors itself. There’s the frequency of a stimulus, not just the magnitude of it. There are also changes in blood and fluid flow that occur. We need to know the real mechanism."

And does it matter if the force put on bone comes from fat rather than muscle? "Some studies suggest that fat is a great predictor of bone mass and that it has protective effects on the bone in postmenopausal women," Dr. Hamrick says. Yet the growing number of obese children in the United States tend to have lower bone mass relative to their body weight than they should, he says. "We can look at whether muscle has more of an impact on bone mass than fat because our mighty mice don’t gain fat. So we can take two mice that weigh exactly the same, one mostly muscle and the other mostly fat, and compare bone mass," he says, using a rodent-sized bone density machine. "The other thing we want to know is, if you increase muscle mass through exercise, do you get the same amount of bone increase as you do by losing myostatin?"

That means taking normal mice, exercising them and looking at their bone mass relative to their muscle mass. He also is exercising the mighty mice, no small task because, unlike normal mice that happily run on a treadmill as long as you let them, these muscle-bound counterparts prefer to skip the workout. Interestingly, early evidence indicates that when myostatin knockout mice do exercise, it doesn’t benefit their bones as much as the normal mice.

"Does an exercised normal mouse have the same amount of bone mass and strength as a regular mighty mouse that is just sitting around not exercising?" Dr. Hamrick asks, adding that early data indicates the answer may be yes. "I think what we are finding goes right along with what people at the MCG Georgia Prevention Institute are finding with studies of human exercise: there is no easy way out. The best way to make our kids strong, healthy and happy is a good diet and regular exercise. That is going to help their hearts, brains and bones. We see it in people. We are seeing it in mice."

Like many age-related infirmities, osteoporosis is becoming a bigger concern as people live longer, he says. Weak, fracture-prone bones likely are in the future for many children who today appear polar opposites: those too fat from overeating and inactivity or too frail from not eating because of an obsession with thinness, says the scientist and father.

Toni Baker | EurekAlert!
Further information:
http://www.mcg.edu

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Global study of world's beaches shows threat to protected areas

19.07.2018 | Earth Sciences

New creepy, crawly search and rescue robot developed at Ben-Gurion U

19.07.2018 | Power and Electrical Engineering

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>