Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A genetic disorder yields insight into genes and cognition

02.09.2004


Researchers attempting to understand the stunningly complex machinery by which genes give rise to the brain often find invaluable clues in genetic disorders that affect brain structure and function.



Andreas Meyer-Lindenberg and his colleagues have gained just such clues by studying the brain function of sufferers of Williams syndrome (WS). This rare disorder, caused by the deletion of a specific chromosome segment, can cause mental retardation, physical abnormalities, and personality disorder. But most intriguing to Meyer-Lindenberg and his colleagues is that the disorder causes a specific inability to visualize an object as a set of parts--for example, to assemble a simple piece of furniture.

In brain-imaging studies of people with WS, the researchers sought to shed light on the neurological malfunction that underlies this inability. In particular, they sought to determine whether the functional disorder could reveal the "modularity" of the processing of visual information in the brain’s visual cortex.


The visual cortex is basically organized into two processing pathways--a ventral pathway that processes the identity of objects and a dorsal pathway that processes spatial information on them. Thus, reasoned the researchers, the weakness in "visuospatial construction" in people with WS likely lies in the dorsal pathway.

In their experiments, the researchers performed functional magnetic resonance imaging (fMRI) of the brains of 13 volunteers with WS, as they asked the volunteers to perform two perceptual tasks. Such fMRI imaging involves using harmless magnetic fields and radio waves to image blood flow in the brain, which reveals brain activity.

In one set of experiments, the researchers asked the subjects to determine whether sets of geometric shapes could be assembled into a square. In another, they asked the patients to concentrate on either the identity of images of faces or houses, or their location. In normal people, attention to identity would activate the ventral stream, and attention to location would activate the dorsal stream.

The fMRI images revealed that the people with WS showed significantly lower neural activity in the dorsal stream of the visual cortex.

Higher-resolution structural MRI imaging revealed a reduction in the volume of gray matter in an adjacent brain region. The researchers’ studies also showed that impaired input from this region could cause the reduced function.

The researchers concluded that "Our observations confirm a longstanding hypothesis about dorsal stream dysfunction in WS, demonstrate effects of a localized abnormality on visual information processing in humans, and define a systems-level phenotype for mapping genetic determinants of visuoconstructive function."

Such insights, they said, should help scientists trace the genetic origin and molecular causes of the disorder.

Heidi Hardman | EurekAlert!
Further information:
http://www.cell.com

More articles from Life Sciences:

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

nachricht Pollen taxi for bacteria
18.07.2018 | Technische Universität München

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>