Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Analysis of Gene Expression in Lymphoid Cells Can Determine Lymphoma Cancer

02.09.2004


Analyzing the expression levels of the gene CDK9 (cyclin dependent kinase) and its attached molecule CYCLIN T1 in lymphoid cells in a sample of blood can accurately pinpoint lymphoma, according to researchers at Temple University’s Sbarro Institute for Cancer Research and Molecular Medicine and the Department of Human Pathology and Oncology at the University of Siena in Italy.



Their study, “CDK9/CYCLIN T1 expression during normal lymphoid differentiation and malignant transformation,” appears in the Journal of Pathology (Volume 203, Issue 4).

Lymphomas are generally difficult to diagnose since no single test currently exists to sufficiently establish their presence. Clinical practice often revolves around a pathologist looking for changes in normal lymph node architecture and cell characteristics through a series of tests, such as blood tests, x-rays, computerized tomography (CT) scans, magnetic resonance imaging (MRI) and bone marrow biopsy.


“There are many types and subtypes of lymphoma, some of which are easy to detect, but many that are very difficult to identify,” says Antonio Giordano, M.D., Ph.D., director of the Sbarro Institute at Temple and one of the study’s principal investigators.

The researchers found that by taking a sample of blood and doing immunohistochemical analysis for the expression of CDK9 and CYCLIN T1, they were able to accurately pinpoint the type of lymphoma—Hodgkins or non-Hodgkins—as well as its stage of advancement. Non-Hodgkins lymphoma is the sixth-most common cancer in the United States.

“Basically, this new method is a very powerful tool in determining the presence of cancer by analyzing these two molecules in the lymphoid tissue,” explains Giordano, an internationally recognized researcher in the genetics of cancer and gene therapy. “The change of levels of CDK9 and CYCLIN T1 in lymphoid cells shows a correlation with activity of the cancer. The higher the expression of the gene and the attached molecule in the blood sample, the more likely for lymphoid cancer.”

CDK9 was originally isolated by Giordano, who at the time was a researcher in Temple’s Fels Cancer Institute, and his team in 1992. A member of a family of kinases, CDK9 was originally referred to as PITALRE, the name of the amino acid sequence that is similar in all members of this kinase family.

“We were screening a human DNA library in order to look for members of this family, and we found CDK9, a gene that encodes for a protein that has the size of 43 kilodaltons,” says Giordano, who is also co-director of the Center for Biotechnology in Temple’s College of Science and Technology.

Over the next 10 years, CDK9 would prove to be a “multi-functional” gene, playing many different roles. According to Giordano, among the many functions of CDK9 that have been discovered, one of the most interesting is the role of this kinase in cellular differentiation, particularly muscle differentiation.

“In practical terms, when we overexpress this protein, we are able to promote myogenic differentiation by enhancing the myoD function,” says Giordano, who also discovered the tumor suppressing gene Rb2/p130. “Our studies have demonstrated that in human tissue, CDK9 is a very important player in specialized tissue, as we see in this study with lymphoid tissue.”

Clinical work for the study was coordinated by Giordano and performed at the Department of Human Pathology and Oncology at the University of Siena in Italy in collaboration with professors Lorenzo Leoncini and Piero Tosi. The researchers believe that this unique method of using the immunohistochemical analysis of a blood sample for the expression of CDK9 and CYCLIN T1 will become an important diagnostic tool in the battle against lymphoma.

The study was supported by the Italian Ministry for Education, Universities and Research and Sbarro Health Research Organization, National Institutes of Health and Petruccelli–American Italian Research Scholarship.

NOTE: A PDF copy of the study is available through Temple University’s Office of Communications

| newswise
Further information:
http://www.temple.edu
http://www.shro.org
http://www.temple.edu/news_media/hkg696.html

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>