Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Probing the surface of white blood cells to enhance immune system medicine

31.08.2004


White blood cells are the principle mediators of immune system function, yet efforts to influence their role in illness have been hampered due to a lack of understanding of the surface structure of these cells - until now. Dartmouth Medical School researchers characterize the structure of white blood cells and challenge assumptions about how a certain immunodeficiency disorder affects the white blood cell surface in the September 1 issue of Blood, the journal of the American Society of Hematology. Their findings could have a large impact on treatments for autoimmune diseases such as diabetes, rheumatoid arthritis and lupus, as well as AIDS and cancer metastasis.



The researchers, led by Henry N. Higgs, assistant professor of biochemistry at Dartmouth Medical School used scanning electron microscopy to analyze the finger-like projections coating white blood cells known as microvilli. "If you asked most medical scientists what a white blood cell looked like they would say a smooth sphere that floats around in the blood, but, in fact, they are not smooth at all - they have these wonderful invaginations and protrusions coming off of them," explained Higgs, who is also a member of the Immunology and Cancer Immunotherapy Research Program at Norris Cotton Cancer Center and a member of the program in immunology.

Higgs and his lab focused much of their work on lymphocytes a type of white blood cell that have a number of roles in the immune system, including the production of antibodies and other substances that fight infection and disease. An essential feature of lymphocytes’ ability to mount an immune response is their ability to migrate from the blood into infected tissues. The process of squeezing between the cells lining blood vessel walls and into the surrounding tissue is known as ’extravasation.’ Research indicates that microvilli may play a key role in this process. They allow white blood cells hurtling through the bloodstream at speeds analogous to a car traveling at 500 miles per hour to attach to the vessel wall and roll to a stop.


Disruption of the putative receptors on microvilli tips that mediate this process could have significant therapeutic benefits. Drugs that eliminate lymphocyte microvilli could lead to a less toxic form of immune suppression for transplant recipients. Since many cancer cells share the same mechanism of extravasation as lymphocytes, ablating microvilli could also prevent metastasis of cancer cells to distant parts of the body. Similarly, by thwarting lymphocyte migration to deposits of cholesterol in coronary arteries, drugs could prevent the atherosclerosis that leads to heart attacks.

Higgs extended this work to compare lymphocytes in patients with Wiskott-Aldrich syndrome, a hereditary immune disorder that affects males and manifests itself through low platelets and recurrent bacterial infections. These conditions can eventually cause a fatal hemorrhage or infection in these patients. Higgs and his team found no differences in the length or density of microvilli on the lymphocytes, despite expressing little to no Wiskott-Aldrich syndrome protein (WASP)Ñthe protein whose deficiency leads to the syndrome. This challenges the long-held view that an absence of WASP led to the inability to form microvilli on lymphocytes.

The study represents the first quantitative characterization of lymphocyte microvilli and, in addition to characterizing their length and density, the research indicates that microvilli are dynamic structures that rapidly alternate between states of assembly and disassembly. This means that if researchers were able to biochemically dissect mechanisms by which microvilli assemble and segregate, they would be able to use this knowledge to develop immunosuppressive or anti-metastatic agents, enhancing the treatment of cancer and other diseases. Higgs and other Dartmouth medical researchers are working to investigate this promising tool through funding from a $12 million Centers of Biomedical Research and Excellence (COBRE) grant awarded by the NIH in 2003.

The researchers will continue their work in hopes of determining the proteins that assemble lymphocyte microvilli. Identification of these proteins would provide a specific target for drug therapy. "If there is one key protein involved in this process then there is the potential to basically figure out what chemical you could jam into a site on this protein -- sort of like wedging a door open so it doesn’t shut," explained Higgs. "And we want to make sure that wedge doesn’t prop any other doors open that should stay closed."

Other institutions that took part in this research are the University of Toronto and Ludwig-Maximilians University in Munich, Germany. The research was supported by the American Cancer Society, the National Institutes of Health, the Pew Biomedical Scholars and the Canadian Institutes of Health Research.

Andrew Nordhoff | EurekAlert!
Further information:
http://www.dartmouth.edu

More articles from Life Sciences:

nachricht Staying in Shape
16.08.2018 | Max-Planck-Institut für molekulare Zellbiologie und Genetik

nachricht Chips, light and coding moves the front line in beating bacteria
16.08.2018 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Staying in Shape

16.08.2018 | Life Sciences

Diving robots find Antarctic seas exhale surprising amounts of carbon dioxide in winter

16.08.2018 | Earth Sciences

Protein droplets keep neurons at the ready and immune system in balance

16.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>