Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Probing the surface of white blood cells to enhance immune system medicine

31.08.2004


White blood cells are the principle mediators of immune system function, yet efforts to influence their role in illness have been hampered due to a lack of understanding of the surface structure of these cells - until now. Dartmouth Medical School researchers characterize the structure of white blood cells and challenge assumptions about how a certain immunodeficiency disorder affects the white blood cell surface in the September 1 issue of Blood, the journal of the American Society of Hematology. Their findings could have a large impact on treatments for autoimmune diseases such as diabetes, rheumatoid arthritis and lupus, as well as AIDS and cancer metastasis.



The researchers, led by Henry N. Higgs, assistant professor of biochemistry at Dartmouth Medical School used scanning electron microscopy to analyze the finger-like projections coating white blood cells known as microvilli. "If you asked most medical scientists what a white blood cell looked like they would say a smooth sphere that floats around in the blood, but, in fact, they are not smooth at all - they have these wonderful invaginations and protrusions coming off of them," explained Higgs, who is also a member of the Immunology and Cancer Immunotherapy Research Program at Norris Cotton Cancer Center and a member of the program in immunology.

Higgs and his lab focused much of their work on lymphocytes a type of white blood cell that have a number of roles in the immune system, including the production of antibodies and other substances that fight infection and disease. An essential feature of lymphocytes’ ability to mount an immune response is their ability to migrate from the blood into infected tissues. The process of squeezing between the cells lining blood vessel walls and into the surrounding tissue is known as ’extravasation.’ Research indicates that microvilli may play a key role in this process. They allow white blood cells hurtling through the bloodstream at speeds analogous to a car traveling at 500 miles per hour to attach to the vessel wall and roll to a stop.


Disruption of the putative receptors on microvilli tips that mediate this process could have significant therapeutic benefits. Drugs that eliminate lymphocyte microvilli could lead to a less toxic form of immune suppression for transplant recipients. Since many cancer cells share the same mechanism of extravasation as lymphocytes, ablating microvilli could also prevent metastasis of cancer cells to distant parts of the body. Similarly, by thwarting lymphocyte migration to deposits of cholesterol in coronary arteries, drugs could prevent the atherosclerosis that leads to heart attacks.

Higgs extended this work to compare lymphocytes in patients with Wiskott-Aldrich syndrome, a hereditary immune disorder that affects males and manifests itself through low platelets and recurrent bacterial infections. These conditions can eventually cause a fatal hemorrhage or infection in these patients. Higgs and his team found no differences in the length or density of microvilli on the lymphocytes, despite expressing little to no Wiskott-Aldrich syndrome protein (WASP)Ñthe protein whose deficiency leads to the syndrome. This challenges the long-held view that an absence of WASP led to the inability to form microvilli on lymphocytes.

The study represents the first quantitative characterization of lymphocyte microvilli and, in addition to characterizing their length and density, the research indicates that microvilli are dynamic structures that rapidly alternate between states of assembly and disassembly. This means that if researchers were able to biochemically dissect mechanisms by which microvilli assemble and segregate, they would be able to use this knowledge to develop immunosuppressive or anti-metastatic agents, enhancing the treatment of cancer and other diseases. Higgs and other Dartmouth medical researchers are working to investigate this promising tool through funding from a $12 million Centers of Biomedical Research and Excellence (COBRE) grant awarded by the NIH in 2003.

The researchers will continue their work in hopes of determining the proteins that assemble lymphocyte microvilli. Identification of these proteins would provide a specific target for drug therapy. "If there is one key protein involved in this process then there is the potential to basically figure out what chemical you could jam into a site on this protein -- sort of like wedging a door open so it doesn’t shut," explained Higgs. "And we want to make sure that wedge doesn’t prop any other doors open that should stay closed."

Other institutions that took part in this research are the University of Toronto and Ludwig-Maximilians University in Munich, Germany. The research was supported by the American Cancer Society, the National Institutes of Health, the Pew Biomedical Scholars and the Canadian Institutes of Health Research.

Andrew Nordhoff | EurekAlert!
Further information:
http://www.dartmouth.edu

More articles from Life Sciences:

nachricht New study finds distinct microbes living next to corals
22.05.2019 | Woods Hole Oceanographic Institution

nachricht Summit charts a course to uncover the origins of genetic diseases
22.05.2019 | DOE/Oak Ridge National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

Im Focus: A step towards probabilistic computing

Working group led by physicist Professor Ulrich Nowak at the University of Konstanz, in collaboration with a team of physicists from Johannes Gutenberg University Mainz, demonstrates how skyrmions can be used for the computer concepts of the future

When it comes to performing a calculation destined to arrive at an exact result, humans are hopelessly inferior to the computer. In other areas, humans are...

Im Focus: Recording embryonic development

Scientists develop a molecular recording tool that enables in vivo lineage tracing of embryonic cells

The beginning of new life starts with a fascinating process: A single cell gives rise to progenitor cells that eventually differentiate into the three germ...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Summit charts a course to uncover the origins of genetic diseases

22.05.2019 | Life Sciences

New study finds distinct microbes living next to corals

22.05.2019 | Life Sciences

Stellar waltz with dramatic ending

22.05.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>