Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chemical engineers discover filtration system to help biotech industry

20.08.2004


Chemical engineers at New Jersey Institute of Technology (NJIT) have developed a new filtration system to enable scientists and engineers to separate and purify two different kinds of proteins having relatively close molecular weight. Until now, doing such separations with membrane filtration was impossible. This research was reported in the June 20, 2004 issue of Biotechnology and Bioengineering.



"This is good news," said Kamalesh K. Sirkar, PhD, distinguished professor of chemical engineering and the project’s lead researcher. "To separate the good from the bad proteins is an important engineering breakthrough. We believe that pharmaceutical companies will immediately be able to put our research to work."

Before this invention, proteins had to differ five to six times in their molecular weight, before a scientist or engineer could separate them using a process called ultra-filtration. "Now using a new kind of membrane that we invented at NJIT, the proteins can have almost the same molecular weight," said Sirkar. The process also will be more cost-effective because the machines can run on a continuous basis.


"The reason we think this process will be important to the industry is because purification of protein is important to its end use," said Sirkar. Impure proteins can’t be used in any biopharmaceutical applications. However, when scientists in the past have gone to separate proteins and remove impurities by chromatography, costs have escalated.

NJIT has funded this research to date. The next step is to seek outside funding because more work needs to be done. "We know the process will work with a mixture of two proteins. But, Sirkar speculated, will it work if the mixtures contain three or four proteins? More questions include: can it be used on viruses or endotoxins –the outer coating of a particular type of bacteria? Will the process work with non-biological macromolecules such as dextran? "We think it can be used, but we don’t know," said Sirkar. "That’s why we are seeking additional funding to continue this research."

Sirkar, a noted expert in the membrane filtration processes and holder of more than 20 patents, has been a research professor at NJIT since 1992. He is now the NJIT Foundation Professor of Membrane Separations. Sirkar also directs the NJIT Center for Membrane Technologies. The long-time Bridgewater Township resident received a master’s degree and doctorate in chemical engineering from the University of Illinois (Urbana). Meredith Feins, PhD, a June 2004 graduate of NJIT’s doctoral program in chemical engineering, worked on this research in the laboratory. Feins grew up in Cedar Grove and now resides in River Vale.

Sheryl Weinstein | EurekAlert!
Further information:
http://www.njit.edu

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

UNLV study unlocks clues to how planets form

13.12.2018 | Physics and Astronomy

Live from the ocean research vessel Atlantis

13.12.2018 | Earth Sciences

Stanford researcher deciphers flows that help bacteria feed and organize biofilms

13.12.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>